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Abstract

We, Soham Chatterjee, Bsc 2nd Year, Math and Computer Science and Shree Ganesh S J, Msc 2nd Year, Computer
Science students of Chennai Mathematical Institute have created this report for the presentation on the introduction
of Algebraic Geometric Codes to Prof. Amit Kumar Sinhababu for the course Algorithmic Coding Theory. Wemainly
followed the survey [BHHW98]. We also followed the course on Algebraic Geometric Codes by Gil Cohen, [Coh22].
He followed the book [Sti08]. Initial works on Algebraic Geometric Codes were done by V. D. Goppa that is why
these codes are also called Goppa Codes. Goppa submitted his seminal paper [Gop77] in June 1975. Goppa also
published more papers on this topic, [Gop81], [Gop84]. Later he published a book on Goppa Codes, [Gop88]. There
are two more books [TV91] and [TVN07] on Algebraic Geometric Codes.
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CHAPTER 1

Preliminaries

1.1 Introduction
Algebro-geometric codes (or Algebraic geometry codes as referred commonly) has been studied since the publication
of Goppa’s paper describing them [Gop77], [Gop81], [Gop84]. These codes attracted interest in the coding theory
community because they have the ability to surpass the Gilbert–Varshamov bound; at the time this was discovered,
the Gilbert–Varshamov bound had not been broken in the 30 years since its discovery. This was demonstrated by
Tfasman, Vlăduţ, and Zink in the same year as the code construction was published, in their paper [TVZ82]. To
describe the construction of the codes we first need to set up the mathematics. We will define some objects like
divisors, differentials which we need to define the code and also state some theorems. Then we will dive right into
the construction and some bounds of the code.

Where do these come from? Recall how the Reed-Solomon codes were defined. We took an Alphabet Fq
where q is a prime power and we took our codes to be the evaluation of polynomials on some predetermined point
of Fn

q . This gives us a tuple of evaluations of these polynomials which forms the codeword. How do we generalise
this? A natural way to do so is to think about how we can choose these evaluation points. We can potentially choose
an arbitrary algebraic curve sitting inside Fn

q and evaluate the polynomials on some points on this curve. Due to
a few complicated reasons, defining such algebraic curves over some projective space defined over an algebraically
closed field makes things easier from a computational perspective and hence we’ll be investigating the same.

1.2 Mathematics

1.2.1 Divisors
Definition 1.2.1 (Divisor). A divisor is a formal sumD = ∑

P∈X
npP with nP ∈ Z and nP = 0 for all but finite number

of points P.

The support of a divisor is the set of all points with nonzero coefficient. A divisor D is called effective if all
coefficients nP are nonnegative (We denote it by D ≽ 0) The degree deg(D) := ∑

P∈X
nP.

Definition 1.2.2 (Principal Divisor). If f is a rational function on X not identically 0 the we define the divisor of f to
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be
( f ) = ∑

P∈X
vP( f )P

Divisor of a rational function is called a principal divisor.

Two divisors D,D′ are linearly equivalent if and only if D −D′ is a principal divisor

1.2.2 Reimann-Roch Spaces
Definition 1.2.3 (Reimann-Roch Spaces). For any divisor D ∈ D̃

L(D) = { f ∈ F(X )∗ | ( f ) +D ≽ 0} ∪ {0}

The dimension of L(D) over F is denoted by l(D)

Theorem 1.2.1. (i) If deg(D) < 0 then l(D) = 0

(ii) l(D) ≤ 1 + deg(D)

Theorem 1.2.2. L(0) = F. Hence l(0) = 1

1.2.3 Differentials
Definition 1.2.4 (Derivation). Let V be a vector space over F(X ). An F-linear map D : F(X ) → V is called a
derivation if it satisfies the product rule

D( f g) = f D(g) + gD( f )

The set of all derivations D : F(X ) → V will be denoted by Der(X .V). Der(X ,V) forms a vector space
over F(X ). We denote Der(X ,V) by Der(X ) if V = F(X ).
Theorem 1.2.3. Let t be a local parameter at a point P. Then there exists a unique derivation Dt : F(X ) → F(X )
such that Dt(t) = 1 and dimF(X )(Der(X )) = 1 and Dt is a basis element for every local parameter t

Definition 1.2.5 (Differential). A rational differential form or differential on X is an F9X )-linear map from Der(X )
to F(X ). The set of all rational differential forms X is denoted by Ω(X ).

Again Ω(X ) forms a vector space over F(X ). The differential d f : Der(X ) → F(X ) is defined by d f (D) =
D( f ) for all D ∈ Der(X ). Then d is a derivation.
Theorem 1.2.4. dimF(X )(Ω(X )) = 1 and dt is a basis for every point P with local parameter t.

For every point P and local parameter tP a differential ω on X can be represented in a unique way as ω =
fPdtP where fP is a rational function. The order or valuation of ω at P is defined by vP(ω) = vP( fP). A differential
form ω is called regular if it has no poles. The regular differentials on X form an F[X ]-module which we denote by
Ω[X ]

Definition 1.2.6 (Canonical Divisor). Let ω be a differential then the divisor (ω) is defined by

(ω) = ∑
P∈X

vP(ω)P

Divisors of differentials are called canonical divisor.

If ω′ be another nonzero differential then ω′ = f ω for some rational function f . Hence canonical divisors
form one equivalence class. Let W denote the divisor of the differential ω. Hence L(W) ≡ Ω[X ]

Definition 1.2.7 (Genus of a Curve). Let X be a smooth projective curve over F. The the genus g of X is defined by
l(W).

Theorem 1.2.5. Let X is nonsingular projective curve of degree m in P2. Then

g =
1
2
(m − 1)(m − 2)
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1.2.4 Reimann-Roch Theorem
Theorem 1.2.6 (Reimann-Roch Theorem). D is a divisor on a smooth projective curve with genus g. Then for any
canonical divisor W

l(D)− l(W −D) = deg(D)− (g − 1)

Corollary 1.2.7. For any canonical divisor W, deg(W) = 2g − 2

Proof: Take D = W. Then l(W −D) = l(0) = 1 by Theorem 1.2.2. So we have

l(W)− 1 = deg(W)− (g − 1)

By definition l(W) = g. Hence we have g − 1 = deg(W)− (g − 1) ⇐⇒ deg(W) = 2g − 2. ■

With the help of this corollary we can finally focus on the divisors which we will actually use to define codes. The
following corollary gives the dimension of the Reimann-Roch Spaces of divisors with degree more than 2g − 2.

Corollary 1.2.8. Let D be a divisor on a smooth projective curve of genus g and let deg(D) > 2g − 2. Then

l(D) = deg(D)− (g − 1)

Proof: We have deg(W −D) = deg(W)−deg(D). Now by Corollary 1.2.7 deg(W −D) < 0. So l(W −D) =
0 by Theorem 1.2.1 part (ii). So We have l(D) = deg(D)− (g − 1). ■

1.2.5 Index of speciality
Definition 1.2.8 (Index of Specialty). Let D be a divisor on a curve X . We define

Ω(D) = {ω ∈ Ω(X ) | (w)− D ≽ 0}

and we denote the dimension of Ω(D) over F by δ(D) called the index of specialty of D.

Theorem 1.2.9. δ(D) = l(W −D)

Proof: If W = (ω). Define the linear map φ : L(W −D) → Ω(D) by φ( f ) = f ω.

f ∈ L(W −D) =⇒ ( f ) + W −D ≽ 0 ⇐⇒ ( f ) + (ω)−D ≽ ⇐⇒ ( f ω)−D ≽ 0 ⇐⇒ f ∈ Ω(D)

Hence φ is an isomorphism. Therefore δ(D) = l(W −D) ■
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CHAPTER 2

Codes from Algebraic Curves

We have now came to define the Algebraic Geometric Codes.

2.1 Setting up the System
First we will define the system where we will define the codes.

• Our alphabet will be Fq

• We will consider the functions f ∈ Fq[X1, . . . , Xn]. Sometimes we will write X to denote (X1, . . . , Xn). n
depends on the context

• If the affine curve X over Fq is defined by a prime ideal I in Fq[X] then its coordinate ring Fq[X ] = Fq[X]/I
and its function field Fq(X ) is the quotient field of Fq[X ].

• It is always assumed that the curve is absolutely irreducible, i.e. the defining ideal is also prime in F[X] where
F := Fq i.e. F is the algebraic closure of Fq.

Similar adaptations are made for projective curves.

Observation. For any F ∈ Fq[X], F(x1, . . . , xn)q = F(xq
1, . . . , xq

n). So if (x1, . . . , xn) is a zero of F and F is defined
over Fq then (xq

1, . . . , xq
n) is also a zero of F.

We can extend the Frobenius Map, Fr : x 7→ xq coordinate-wise to points in affine and projective space by
Fr(x1, . . . , xn) = (xq

1, . . . , xq
n). If X is a curve defined over Fq and P is a point of X , then Fr(P) is also a point of

X .

Definition 2.1.1 (Rational Divisor). A divisor D on X is called rational if the coefficients of P and Fr(P) is D are the
same for any point P of X .

Remark: Now on the space L(D) will only be considered for rational divisors and as before but with the restric-
tion of the rational functions to Fq(X )

LetW be an absolutely irreducible nonsingular projective curve overFq. Wewill define two kinds of algebraic
geometry codes fromX ,Geometric Reed Solomon Codes andGeometric Goppa Codes. Let P1, . . . , Pn are rational points
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on X and D be the divisor D = P1 + · · ·+ Pn. Furthermore G is some other divisor that has support disjoint from
D.
Remark: We will make more restrictions on G , deg(G) > 2g − 2

2.2 Geometric Reed Solomon Codes
With the setting as above we define

Definition 2.2.1 (Geometric Reed Solomon Codes). The linear code C(D,G) of length n over Fq is the image of the
linear map α : L(G) → Fn

q defined by α( f ) = ( f (P1), . . . , f (Pn))

Theorem 2.2.1. The code C(D,G) has dimension

k = deg(G)− (g − 1)

and distance
d ≥ n − deg(G)

Corollary 2.2.2. k + d ≥ n − (g − 1)

Proof: k + n ≥ deg(G)− (g − 1) + n − deg(G) = n − (g − 1) ■

Example 2.2.3. Let X be the projective line over Fqm . Hence genus g = 0. Let n = qm − 1. Define P0 = (0 : 1),

P∞ = (1 : 0). Let β be the primitive nth root of unity. Define Pi = (βi : 1) for all i ∈ [n]. Define D =
n
∑

i=1
Pi and

G = aP0 + bP∞ where a, b ≥ 0 are non-negative integers. By Corollary 1.2.8, l(G) = a + b + 1 and the functions(
x
y

)i
for −a ≤ i ≤ b forms a basis of L(G). Consider the code C(D,G). A generator matrix for this code has rows

(βi, β2i, . . . , βni) with −a ≤ i ≤ b. IT follows that C(D,G) is a Reed-Solomon Code.

2.3 Geometric Goppa Codes
We now come to the second class of algebraic geometry codes.

Definition 2.3.1. The linear code C∗(D,G) of length n over Fq is the image of the linear map α∗ : Ω(G −D) → Fn
q

defined by
α∗(ω) = (ResP1(η), . . . , ResPn(η))

Theorem 2.3.1. The code C∗(D,G) has dimension

k∗ = n − deg(G) + (g − 1)

and distance
d∗ ≥ deg(G)− 2(g − 1)

Corollary 2.3.2. k∗ + d∗ ≥ n − (g − 1)

Proof: k∗ + d∗ ≥ n − deg(G) + (g − 1) + deg(G)− 2(g − 1) = n − (g − 1) ■
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Example 2.3.3. Let L = {α1, . . . , αn} be a set of n distinct elements of Fqm . Let g be a polynomial in Fqm [X] which
is not zero at αi for all i ∈ [n]. The Classical Goppa Code Γ(L, g) is defined by

Γ(L, g) =

{
c ∈ Fn

q |
n

∑
i=1

ci
X − αi

≡ 0 (mod g)

}

Let Pi = (αi : 1), Q = (1 : 0) and D = P1 + · · ·+ Pn. If we take for E the divisor of zeros of g on the projective line,
then

Γ(L, g) = C∗(D, E − Q)

and

c ∈ Γ(L, g) ⇐⇒
n

∑
i=1

ci
X − αi

dX ∈ Ω(E − Q −D)

It is a well-known fact that the parity check matrix of the Goppa Code Γ(L, g) is equal to the following generator
matrix of a generalized RS code 

g(α1)
−1 · · · g(αn)−1

α1g(α1)
−1 · · · αng(αn)−1

...
. . .

...
αr−1

1 g(α1)
−1 · · · αr−1

n g(αn)−1


where r is the degree of the Goppa polynomial g.

2.4 Relation between the 2 Codes
Theorem 2.4.1. The codes C(D,G) and C∗(D,G) are dual codes.

Theorem 2.4.2. Let X be a curve defined over Fq. Let P1, . . . , Pn be n rational points on X . Let D = P1 + · · ·+ Pn.
Then there exists a differential form ω with simple poles at the Pi such that ResPi (ω) = 1 for all i ∈ [n]. Furthermore

C∗(D,G) = C(D, W +D − G)

So one can do without differentials and the codes C∗(D,G). However it is useful to have both classes when
treating decoding methods. These use parity check, so one needs a generator matrix for the dual codes.
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CHAPTER 3

Asymptotically Good Sequences of Codes and Curves

3.1 Introduction to Good Codes
Following the distance and dimension of both the Geometric Reed Solomon Codes and Geometric Goppa Codes we
have the following theorem

Theorem 3.1.1. For any algebraic geometry code with dimension k and distance d on a curve of genus g with n points
that are defined over Fq satisfy

k + d ≥ n − (g − 1) ⇐⇒ R + δ ≥ 1 − g − 1
n

This bound feels almost like Singleton Bound but with the genus of the curve involved. First we define what
Asymptotically Good code is

Definition 3.1.1 (Asymptotically Good Codes). A sequence of codes {Cm | m ∈ N} with parameters [nm, km, dm]

over a fixed finite fields F)q is called asymptotically good if nm tends to infinity, dm
nm

tends to a nonzero constant δ and
km
nm

tends to a nonzero constant R for m → ∞.

By Gilbert-Vershamov bound there exists asymptotically good sequences of codes attaining the bound R ≥
1 − Hq(δ).

In order to construct asymptotically good codes we therefore need curves with low genus and many Fq-
rational points.

Definition 3.1.2. Let Nq(g) be the maximal number of Fq-rational points on an absolutely irreducible nonsingular
projective curve over Fq of genus g. Let

A(q) := lim sup
g→∞

Nq(g)
g

3.2 Some Bounds
Weknow that to find good codes wemust find long codes. To use themethods from algebraic geometry it is necessary
to find rational points on a given curve. The number of these is a bound on the length of the codes. A central problem
in algebraic geometry is finding for the number of rational points on a variety. So we mention the Hasse-Weil Bound
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Theorem 3.2.1 (Hasse-Weil Bound, [Has36]). Let X be a curve of genus g over Fq. If Nq(X ) denotes the number of
rational points on X then

|Nq(X )− (q + 1)| ≤ g2
√

q

Which was latter improved by Serre in [Wei48], known as Weil-Serre Bound

Theorem 3.2.2 (Weil-Serre Bound, [Wei48]). Let X be a curve of genus g over Fq. If Nq(X ) denotes the number of
rational points on X then

|Nq(X )− (q + 1)| ≤ g⌊2
√

q⌋
From this Bound by dividing both side by the genus (provided the genus is not 0) and taking the limit we

obtain
A(q) ≤ 2⌊q⌋

.This has been improved to the Drinfeld-Vlăduţ

Theorem 3.2.3 (Drinfeld-Vlăduţ Bound, [VD83]).

A(q) ≤ √
q − 1

Equality holds if q is a square.

And Ihara in [Iha82] has shown that

Theorem 3.2.4 ([Iha82]).
A(q) ≥ √

q − 1

when q is a square

The equality is proved by studying the number of rational points ofmodular curves over finite fields. Applying
this to the algebraic geometric codes we finally get the Tsfasman-Vlăduţ-Zink (TVZ) Bound

Theorem 3.2.5 (Tsfasman-Vlăduţ-Zink (TVZ) Bound, [TVZ82]). Let q be a square. Then for every R there exists an
asymptotically good sequences of codes such that their rate tends to R and relative distance δ and

R + δ ≥ 1 − 1
√

q − 1

This means that TVZ bound is better than the GV bound when q is a square and q ≥ 49 in a certain range
of δ.

3.3 Asymptotically Good Curves
First if X is absolutely irreducible then it is called a curve. Now we define what asymptotically good curve is.

Definition 3.3.1 (Asymptotically Good Curves). A sequence of curves {Xm | m ∈ N} is called asymptotically good
if g(Xm) tends to infinity and the following limit exists

lim
m→∞

Nq(Xm)

g(Xm)
> 0

where g(X ) is the genus of X .

In the following we discuss an asymptotically good curve family.
Let F ∈ Fq[X, Y]. Let d = degY(F). Assume that there exists a subset S of Fq such that for any x ∈ S there

exists exactly d distinct y1, . . . , yd ∈ S such that F(x, yi) = 0 for all i ∈ [d]. Now consider the algebraic set Xm in
Am defined by the equations

F(Xi, Xi+1) = 0 for i ∈ [m − 1]

We can easily get a lower bound on the number of rational points for Xm. X1 has |S| many choices and after words
for all Xi, 2 ≤ i ≤ m has d choices. So number of rational points is at least |S| · dm−1.
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Example 3.3.1. Let q = 4. Let F = XY2 + Y + X2. The F is an example with d = 2 and S = F∗
4 . Therefore

this gives a curve with 3 · 2m−1 points with nonzero coordinates in F4 and in fact it gives a sequence of curves that is
asymptotically good.

In general let q = r2. Consider F = Zr−1Yr +Y = Xr . Then we get an example with a = r and S = F∗
q . The

equation F = 0 has the property that for every given nonzero element x ∈ Fq there are exactly r nonzero solutions in
Fq of the equation F(x, Y) = 0 in Y. To see this first multiply the equation with X to get XF = Xryr + XY − Xr+1.
Then replace z = XY and we get

G = Zr + Z − Xr+1

This defines an hermitian curve Ur+1 + Vr+1 + 1 = 0 whose homogeneous version is Ur+1 + Vr+1 + Wr+1 = 0,
which is a Fermat curve. Therefore the corresponding sequence of curves Xm satisfies

Nq(X ) ≥ (q − 1)rm−1

The genus of the curve Xm is computed by induction by applying formula of Hurwitz-Zeuthen, [Har77] to the
covering πm : Xm → Xm−1 where πm(x1, . . . , xm) = (x1, . . . , xm−1). It is easier to view this in terms of function
fields. Let Fm be the function field of Xm. Then F1 = Fq(z1) and Fm is obtained from Fm−1 by adjoining a new
element zm that satisfies the equation

zr
m + zm = xr+1

m−1

where xm−1 = zm−1
xm−2

∈ Fm−1 for m ≥ 2 and x1 = z1, x0 = 1.

Theorem 3.3.2. The genus gm of the curve Xm or equivalently of the function field Fm is equal to

gm =

{
rm + rm−1 − r

m+1
2 − 2r

m−1
2 + 1 when m is odd

rm + rm−1 − 1
2 r

m+2
2 − 3

2 r
m
2 − r

m−2
2 + 1 when m is even

Thus the Drinfeld-Vlăduţ Bound is attained.
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