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Introduction

• Pure Nash Equilibria: A strategy profile s ∈ S of a game Γ is a Pure Nash
Equilibrium if for every player i ∈ [n] and for all s′i ∈ Si, ui(s) ≥ ui(s′i, s−i).

• Mixed Nash Equilibria: A mixed strategy profile σ ∈ Σ of a game Γ is aMixed
Nash Equilibria if for every player i ∈ [n] and for all s′i ∈ Si,
E
s∼σ

[ui(s)] ≥ E
s∼σ

[ui(s′i, s−i)]

• Coarse Correlated Equilibria: A distribution µ over S of a game Γ is a Coarse
Correlated Equilibria if for every player i ∈ [n] and for all s′i ∈ Si,
E
s∼µ

[ui(s)] ≥ E
s∼µ

[ui(s′i, s−i)]

PNE ⊆ MNE ⊆ CCE.
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Lagrangian Duality

Given convex problem:

minimize f(x)

subject to hi(x) ≤ 0 ∀ i ∈ [m],

lj(x) = 0 ∀ j ∈ [r]

Define Lagrangian L(x,u, v) = f(x) +
m∑
i=1

uihi(x) +
r∑

j=1

vjlj(x). Define

g(u, v) = inf
x
L(x,u, v)

The dual of the convex problem:

maximize g(u, v)

subject to u ≥ 0
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Fenchel Duality

Let f : Rn → R is a convex function. Then the convex conjugate of f is the function

f∗(y) = sup
x∈Rn

{⟨y, x⟩ − f(x)}

Theorem (Fenchel Duality)

Let f : X → R, g : Y → R are two convex functions and A : X → Y any bounded linear
map. Suppose

p∗ = inf
x∈X

{f(x) + g(Ax)} and d∗ = sup
y∈Y

{−f∗(A∗y)− g∗(−y)}

where A∗ is the adjoint of A. Then p∗ ≥ d∗
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Weighted Congestion Games



Definitions

• N : Set of players
• E : The ground set of resources
• For each player j ∈ N , let Sj ⊆ 2E be the set of strategies available to player j.
Let S = ×

j∈N
Si.

• For each j ∈ N and each e ∈ E there is a weight of the resourcewej ∈ R+.
• For each e ∈ E the cost of resource e is an affine function Ce : R → Rwhere
ce(x) = ae · x+ be

• For any strategy profile f ∈ S, the cost of player j is Cost(f)j =
∑
e∈fj

wej · ce(le(f))

where le(f) =
∑

j′:e∈fj′
wej′ is the load on resource e. Do

Cost(f) =
∑
j∈N

∑
e∈fj

wej · ce(le(f)) =
∑
e∈E

ae · le(f) + be · le(f)
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Convex program of WCG
Setting up the variables

For any player j ∈ N and fj ∈ Sj let Lj,fj =
∑
e∈fj

wej · ce(wej) i.e. the cost incurred by

player jwhen it plays strategy fj.

• xj,fj := Variable for player j playing strategy fj for all j ∈ N and fj ∈ Sj

• ye := Variable for the load on resource e for all e ∈ E
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Convex program of WCG
Quadratic Program

minimize
∑
j∈N

∑
fj∈Sj

xj,fj · Lj,fj +
∑
e∈E

ae · y2e

subject to
∑
fj∈Sj

xj,fj ≤ 1 ∀ j ∈ N ,

∑
j∈N

∑
fj∈Sj

∑
e∈fj

wej · xj,fj ≤ ye ∀ e ∈ E ,

xj,fj ≥ 0 ∀ j ∈ N , fj ∈ Sj
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wej · xj,fj ≤ ye ∀ e ∈ E ,

xj,fj ≥ 0 ∀ j ∈ N , fj ∈ Sj
This constraint makes sure only one strategy is played
by each player.
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is at least sum of the weights of the players using that re-
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Dual Program

We denote the dual variables by {µj}j∈N , {Φe}e∈E and {Ψe}e∈E . Then we use the
Fenchel Duality to obtain the dual of the convex program.

maximize
∑
j∈N

µj −
∑
e∈E

1

4ae
· Φ2

e

subject to µj −
∑
e∈fj

we,j ·Ψe ≤ Lj,fj ∀ j ∈ N , fj ∈ Sj,

Ψe ≤ Φe ∀ e ∈ E ,
µj ≥ 0 ∀ j ∈ N ,

Φe ≥ 0 ∀ e ∈ E

Remark

We can take Φe = Ψe for all e ∈ E as from every CCE we will assign Φe and
Ψe to be the same value
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(
1 + 1

δ

)
-Approximate Solution from Primal

Consider the following changed primal program:

minimize
1

δ

∑
j∈N

∑
fj∈Sj

xj,fj · Lj,fj +
∑
e∈E

ae · y2e

subject to
∑
fj∈Sj

xj,fj ≤ 1 ∀ j ∈ N ,

∑
j∈N

∑
fj∈Sj

∑
e∈fj

wej · xj,fj ≤ ye ∀ e ∈ E ,

xj,fj ≥ 0 ∀ j ∈ N , fj ∈ Sj

If δ = 1we get our original program. For any δ > 0we get a
(
1 + 1

δ

)
-approximate

solution.
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Dual don't need to change

Taking the dual of the new programwe get the following:

maximize
∑
j∈N

µj −
∑
e∈E

1

4ae
· Φ2

e

subject to µj −
∑
e∈fj

we,j ·Φe ≤
Lj,fj
δ

∀ j ∈ N , fj ∈ Sj,

µj ≥ 0 ∀ j ∈ N ,

Φe ≥ 0 ∀ e ∈ E

So instead if we work with the old dual program and scale our variables µj,Φe and
Ψe by 1

δ we still get a feasible solution to the new dual program.
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Setting the Dual Variables

Let σ is any CCE of the game. Set

• µj =
1

δ
· E
f∼σ

[Costj(f)]

• Φe =
1

δ
· ae · E

f∼σ
[le(f)]

Costj(fj, θ−j) ≤
∑
e∈fj

we,j · (ae(le(θ) + we,j) + be)

=
∑
e∈fj

we,j(ae · we,j + be) +
∑
e∈fj

we,j · ae · le(θ)

= Lj,fj +
∑
e∈fj

we,j · ae · le(θ)

Remark

It is a feasible solution to the dual program.
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Bound on PoA : I

∑
e∈E

1

ae
· a2e · E

f∼σ
[le(f)]2 =

∑
e∈E

ae · E
f∼σ

[le(f)]2

≤ E
f∼σ

[∑
e∈N

ae · l2e(f)

]
[Jensen]

≤ E
f∼σ

[∑
e∈N

Costj(f)

]
=

∑
j∈N

E
f∼σ

[Costj(f)]
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Bound on PoA : II

Primal-Sol ≥
∑
j∈N

1

δ
· E
f∼σ

[Costj(f)]−
∑
e∈E

1

δ2
· 1
4
ae · E

f∼σ
[le(f)]2

≥ 1

δ

∑
j∈N

E
f∼σ

[Costj(f)]−
1

4 · δ2
·
∑
e∈E

E
f∼σ

[Costj(f)]

=
4δ − 1

4δ2

∑
e∈E

E
f∼σ

[Costj(f)]

Primal is
(
1 + 1

δ

)
-approximate solution to the optimal solution. So we get a

bound of
(
1 + 1

δ

) 4δ2

4δ − 1
bound on PoA. Take δ = 1+

√
5

4 you will get a bound of 1+ ϕ

where ϕ is the golden ratio.
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Simultaneous Second-Price Auctions



Definition

• M: Set ofm items
• N : Set of n players

• For each player j ∈ N , vj : 2M → R≥0 is the valuation function of player j of
T ⊆ M. vj is submodular.

• Each player j submits a bid bj ∈ Rm
≥0 which follows

∑
i∈T

bij ≤ vj(T) for all T ⊆ M.

• LetWj(b) denote the set of items won by player j ∈ N when the bids are b.
• Let p(i,b) is the second highest bid for item iwhen the bids are b.
• Let uj(b) be the utility of player jwhen the bids are b. Then
uj(b) = vj(Wj(b))−

∑
i∈Wj(b)

p(i,b).

• Auctions of each item follows Second-Price auctions rule.

GOAL: Maximize the social welfare of the players V(b) =
∑
j∈N

vj(Wj(b))
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Property of Biddings

Theorem
∀ j ∈ N , ∀ T ⊆ M, ∀ b ∈ Rm×n

≥0 , ∃ bj(T) ∈ Rm
≥0 such that

uj(bj(T),b−j) ≥ vj(T)−
∑
i∈T

max
j′∈N\{j}

{bij′}

Let T = {1, . . . , i}. Take b∗ij = vj(1, 2, . . . , i)− vj(1, 2, . . . , i− 1). Take bj(T) = b∗j

Observe:
∑
i∈T′

b∗i,j ≤ vj(T′) for all T′ ⊆ T by submodularity and for T = T′ its equality.
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Let T = {1, . . . , i}. Take b∗ij = vj(1, 2, . . . , i)− vj(1, 2, . . . , i− 1). Take bj(T) = b∗j

Observe:
∑
i∈T′

b∗i,j ≤ vj(T′) for all T′ ⊆ T by submodularity and for T = T′ its equality.
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Proof of Theorem

uj(bj(T),b−j) = vj(T∗)−
∑
i∈T∗

max
j′∈N\{j}

{bij′}

≥ vj(T∗)−
∑
i∈T∗

max
j′∈N\{j}

{bij′}+

 ∑
i∈T\T∗

b∗i,j − max
j′∈N\{j}

{bij′}


≥ vj(T)−

∑
i∈T

max
j′∈N\{j}

{bij′}
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LP Formulation

• xj,T := Variable for player jwinning item T.

maximize
∑
T⊆M

∑
j∈N

xj,T · vj(T)

subject to
∑
j∈N

∑
i∈T

xj,T ≤ 1 ∀ i ∈ M,

∑
T⊆M

xj,T ≤ 1 ∀ j ∈ N ,

xj,T ≥ 0 ∀ j ∈ N , T ⊆ M
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This constraint makes sure no item is over-allocated
i.e. each item is sold to only one player.
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Dual Program

minimize
∑
j∈N

yj +
∑
i∈M

zi

subject to yj +
∑
i∈T

zi ≥ vj(T) ∀ j ∈ N , T ⊆ M,

zi ≥ 0 ∀ i ∈ M,

yj ≥ 0 ∀ j ∈ N
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Setting the Dual Variables

Given a CCE σ of the game, we set the dual variables as follows:
• yj = E

b∼σ
[uj(b)] for all j ∈ N .

• zi = E
b∼σ

[
max
j∈N

bij

]
for all i ∈ M.

Since σ is an CCE

E
b∼σ

[uj(b)] ≥ E
b∼σ

[
uj(bj(T),b−j)

]
∀ T ⊆ M

By the theorem

uj(bj(T),b−j) ≥ vj(T)−
∑
i∈T

max
j′∈N\{j}

{bij′} ≥ vj(T)−
∑
i∈T

max
j′∈N

{bij′}

So E
b∼σ

[uj(b)] ≥ vj(T)−
∑
i∈T

E
b∼σ

[
max
j′∈N

{bij′}
]
. So it is feasible solution to the dual

program.
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Bound on PoA

Primal-Sol ≤
∑
j∈N

E
b∼σ

[uj(b)] +
∑
i∈M

E
b∼σ

[
max
j∈N

{bij}
]

= E
b∼σ

∑
j∈N

uj(b)

+ E
b∼σ

[∑
i∈M

max
j∈N

{bij}

]
≤ 2 · E

b∼σ
[V(b)]

So we get a bound of 2.
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Facility Location Games



Definition

• M: Set ofm clients (Indexed by i)
• N : Set of n service providers (Indexed by j)
• L: Set of locations (Indexed by l)

• Each player j ∈ N has its strategy set of locations Sj ⊆ L. S = ×
j∈N

Sj

• Each client i ∈ M has some value πj ≥ 0 for the service money he is wiling to
pay.

• There is a cost c(l, i) for serving the client i ∈ M from the location l ∈ L
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More Definitions

Each supplier chooses a single location l ∈ Sj to set up a facility and offers prices
to the clients.

Let s ∈ S be any strategy profile.
• K(s): Set of locations chosen by the suppliers in s i.e. K(s) =

∪
j∈N

{sj}

• ps(i, j): Price charged from client i by supplier j in strategy profile s.

• Pj(i, l, s−j): Profit of supplier j from client iwhen it is served from location l
and the other suppliers are playing s−j.

• Di(s): Savings of client i in strategy profile swhich is πi − ps(i,SP(i)).

• Total utility of the supplier j ∈ N is uj(s) =
∑

i:SP(i)=j
Pj(i, sj, s−j)

• V(s): Social welfare of the strategy profile s,W(s) =
∑
j∈N

uj(s) +
∑
i∈M

Di(s)
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Choosing Prices

Theorem
For any strategy profile s, for any client i and supplier j, SP(i) = j
(i) c(sj, i) = min

j′∈N
c(sj′ , i)

(ii) ps(i, j) = max
{
c(sj, i), min

l∈K(s)\{sj}
c(l, i)

}

Since prices charged by suppliers doesn’t depend on which supplier charges we
can as well take all the locations distinct.

Pj(i, l, s−j) =

 min
l′∈K(s)\{sj}

c(l′, i)− c(l, i) If c(l, i) ≤ c(l′, i)

0 Otherwise

W(s) =
∑
j∈N

uj(s) +
∑
i∈M

Di(s) =
∑
i∈M

πi − c(sSP(i), i)

25/30



Choosing Prices

Theorem
For any strategy profile s, for any client i and supplier j, SP(i) = j
(i) c(sj, i) = min

j′∈N
c(sj′ , i)

(ii) ps(i, j) = max
{
c(sj, i), min

l∈K(s)\{sj}
c(l, i)

}
Since prices charged by suppliers doesn’t depend on which supplier charges we
can as well take all the locations distinct.

Pj(i, l, s−j) =

 min
l′∈K(s)\{sj}

c(l′, i)− c(l, i) If c(l, i) ≤ c(l′, i)

0 Otherwise

W(s) =
∑
j∈N

uj(s) +
∑
i∈M

Di(s) =
∑
i∈M

πi − c(sSP(i), i)

25/30



Choosing Prices

Theorem
For any strategy profile s, for any client i and supplier j, SP(i) = j
(i) c(sj, i) = min

j′∈N
c(sj′ , i)

(ii) ps(i, j) = max
{
c(sj, i), min

l∈K(s)\{sj}
c(l, i)

}
Since prices charged by suppliers doesn’t depend on which supplier charges we
can as well take all the locations distinct.

Pj(i, l, s−j) =

 min
l′∈K(s)\{sj}

c(l′, i)− c(l, i) If c(l, i) ≤ c(l′, i)

0 Otherwise

W(s) =
∑
j∈N

uj(s) +
∑
i∈M

Di(s) =
∑
i∈M

πi − c(sSP(i), i)

25/30



Choosing Prices

Theorem
For any strategy profile s, for any client i and supplier j, SP(i) = j
(i) c(sj, i) = min

j′∈N
c(sj′ , i)

(ii) ps(i, j) = max
{
c(sj, i), min

l∈K(s)\{sj}
c(l, i)

}
Since prices charged by suppliers doesn’t depend on which supplier charges we
can as well take all the locations distinct.

Pj(i, l, s−j) =

 min
l′∈K(s)\{sj}

c(l′, i)− c(l, i) If c(l, i) ≤ c(l′, i)

0 Otherwise

W(s) =
∑
j∈N

uj(s) +
∑
i∈M

Di(s) =
∑
i∈M

πi − c(sSP(i), i)

25/30



LP Formulation

• xijl := Variable indicating if the supplier j serves the client i from location l.

• xjl := Variable indicating if the supplier j opens a facility at location l.

maximize
∑
j∈N

∑
l∈Sj

∑
i∈M

(πi − c(l, i)) · xijl

subject to
∑
j∈N

∑
l∈Sj

xijl ≤ 1 ∀ i ∈ M,

∑
j∈N

xjl ≤ 1 ∀ l ∈ L,

∑
k∈Sj

xjl ≤ 1 ∀ j ∈ N ,

xijl ≤ xjl ∀ i ∈ M, j ∈ N , i ∈ M, l ∈ Sj,

xijl ≥ 0 ∀ i ∈ M, j ∈ N , l ∈ Sj
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Dual Program

We denote the dual variables by {αj}j∈N , {βi}i∈M, {γl}l∈L and {zijl}i∈M,j∈N ,l∈Sj .

minimize
∑
j∈N

αj +
∑
i∈M

βi +
∑
l∈L

γl

subject to βi + zijl ≥ πi − cil ∀ i ∈ M, j ∈ N , l ∈ Sj,

γl + αj ≥
∑
i∈M

zijl ∀ j ∈ N , l ∈ Sj,

αj ≥ 0 ∀ j ∈ N ,

βi ≥ 0 ∀ i ∈ M

27/30



Dual Program

We denote the dual variables by {αj}j∈N , {βi}i∈M, {γl}l∈L and {zijl}i∈M,j∈N ,l∈Sj .

minimize
∑
j∈N

αj +
∑
i∈M

βi +
∑
l∈L

γl

subject to βi + zijl ≥ πi − cil ∀ i ∈ M, j ∈ N , l ∈ Sj,

γl + αj ≥
∑
i∈M

zijl ∀ j ∈ N , l ∈ Sj,

αj ≥ 0 ∀ j ∈ N ,

βi ≥ 0 ∀ i ∈ M

27/30



Setting the Dual Variables

We set the dual variables as follows:
• αj = E

s∼σ
[uj(s)] for all j ∈ N .

• βi = E
s∼σ

[Di(s)] for all i ∈ M.

• zijl = E
s∼σ

[Pj(i, l, s−j)] for all i ∈ M, j ∈ N and l ∈ Sj.

• DefineWl(s) = uj(s) if l ∈ K(s) and sj = l for some j ∈ N and otherwise 0.
Then γl = E

s∼σ
[Wl(s)] for all l ∈ L.

28/30



Setting the Dual Variables

We set the dual variables as follows:
• αj = E

s∼σ
[uj(s)] for all j ∈ N .

• βi = E
s∼σ

[Di(s)] for all i ∈ M.

• zijl = E
s∼σ

[Pj(i, l, s−j)] for all i ∈ M, j ∈ N and l ∈ Sj.

• DefineWl(s) = uj(s) if l ∈ K(s) and sj = l for some j ∈ N and otherwise 0.
Then γl = E

s∼σ
[Wl(s)] for all l ∈ L.

28/30



Setting the Dual Variables

We set the dual variables as follows:
• αj = E

s∼σ
[uj(s)] for all j ∈ N .

• βi = E
s∼σ

[Di(s)] for all i ∈ M.

• zijl = E
s∼σ

[Pj(i, l, s−j)] for all i ∈ M, j ∈ N and l ∈ Sj.

• DefineWl(s) = uj(s) if l ∈ K(s) and sj = l for some j ∈ N and otherwise 0.
Then γl = E

s∼σ
[Wl(s)] for all l ∈ L.

28/30



Setting the Dual Variables

We set the dual variables as follows:
• αj = E

s∼σ
[uj(s)] for all j ∈ N .

• βi = E
s∼σ

[Di(s)] for all i ∈ M.

• zijl = E
s∼σ

[Pj(i, l, s−j)] for all i ∈ M, j ∈ N and l ∈ Sj.

• DefineWl(s) = uj(s) if l ∈ K(s) and sj = l for some j ∈ N and otherwise 0.
Then γl = E

s∼σ
[Wl(s)] for all l ∈ L.

28/30



Feasibility Checking

• πi − ps(i,SP(i)) ≥ πi − c(l, i) for any l ∈ L . Now Pj(i, l, s−j) ̸= 0when l = SP(i).
Then clearly πi − ps(i,SP(i)) + Pj(i,SP(i), s−j) = πi − c(SP(i), i) and for other
locations Pj(i, l, s−j) = 0. So the first constraint is satisfied

• If l ∈ K(s) thenWl(s) =
∑
i∈M

Pj(i, l, θ−j) for some j ∈ N such that sj = l. So it

satisfies the second constraint. If l /∈ K(s). uj(s) ≥ Pj(i, l, s−j) since σ is a
CCE. So the second constraint is satisfied.
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Bound on PoA

∑
j∈N

αj +
∑
i∈M

βi is the expected social welfare under the distribution σ.

∑
l∈L

Wl(s) is at most the social welfare since σ is a CCE.

So by Weak Duality

Primal-Sol ≤
∑
j∈N

αj +
∑
i∈M

βi +
∑
l∈L

γl ≤ 2 · E
s∼σ

[V(s)]
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