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Given convex problem:
minimize  f(x)

subject to  hi(x) <0 Vie [m],
[i(x) =0 Vjelr

m r
Define Lagrangian L(x,u,v) = f(x) + > u;h;(x) + >_ v;[i(x). Define
i=1 j=1

glu,v) = irxlfﬁ(x, u,v)

The dual of the convex problem:

maximize g(u,V)

subjectto u >0
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Fenchel Duality

Letf: R" — Ris aconvex function. Then the convex conjugate of fis the function

Fy) = sup{{y,x) — ()}

XERN

Theorem (Fenchel Duality)

Letf: X = R,g:Y — Rare two convex functions and A : X — Y any bounded linear
map. Suppose

p* = mf{f(x) +8(Ax)} and d* = Sylelg{—f*(A*Y) -& (=¥}

where A* is the adjoint of A. Then p* > d*



Weighted Congestion Games



Definitions

N: Set of players
&: The ground set of resources
Foreach playerj e NV, letS; C 2¢ be the set of strategies available to player .
LletS= X S,.

JEN
Foreachj € ANl and each e € € there is a weight of the resource wg; € RT.
Foreach e € £ the cost of resource e is an affine function Ce : R — R where
Ce(X) = Qe - X+ be

For any strategy profile f € S, the cost of playerjis Cost(f); = > wej-Ce(le(f))
eef,

where [o(f) = > wgy istheload onresourcee. Do
/:eei/

Cost(f) => > we- Colle(F)) =D e - lo(f) + be - Lo(F)

JEN ecf; ee€
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Convex program of WCG
Setting up the variables

Forany playerj € N andf; € S; let Lj £ = D Wej- Ce(Wej) ie. the costincurred by
" eef]
playerjwhen it plays strategy f;.

© X = Variable for playerj playing strategy f; forallj € N and f; € S;
)

e Yy = Variable for the load on resource e foralle € £



Convex program of WCG
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Convex program of WCG

Quadratic Program

minimize

subject to

Z me : Lm +Zae -y2

JEN fi€S; ecé

dox, <1 ViEN,
Jlj

fies;

E Welr< Ve Veec,
Ja/
[eN L

by each player.

This constraint makes sure only one strategy is played

i €95




Convex program of WCG

Quadratic Program

minimize Z Z Xj,ﬁ» . Lj,fj + Z Qe ‘)/g

JEN fi€S; ecf

subject to ij’f/ <1 VjeN,
fi€s;

ZZZW@-‘XM <ye Vee€g,

JEN fi€S; et

/ .20 YjeN, feS

This constraint makes sure that the load on each resource
is at least sum of the weights of the players using that re-
source.
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Dual Program

We denote the dual variables by {1 }jenr, {Pefece and {We}ece. Then we use the
Fenchel Duality to obtain the dual of the convex program.

maximize Z M — Z i -2
e

JEN ee&
subject to MJ_ZWQJ'q)GSLj’f} VjEN,?chS-,
ecf;
=0 VjeEN,
b, >0 Veeé&

We can take @, = ¥, foralle € £ as from every CCE we will assign . and
W, to be the same value




(1 + 3)-Approximate Solution from Primal

Consider the following changed primal program:

minimize ZZ jf jf +Zae ye

jENfES ee€
subject to me <1 VjeWN,
fes
S5 Ywe o, <ve Vece
JEN f,€S; e€f
Xj,ijO VjEN,ijSj

If 6 = 1 we getouroriginal program. Forany § > 0 we get a (1 + %)—approximate
solution.



Dual don't need to change

Taking the dual of the new program we get the following:
1 o2

maximize Z Wi — io ¥

JEN eel

L.
subject to /,LJ—ZWQJ-CI)e < gf,- VjEN,?Cj'ES-,
ecf;
b, >0 Veef&

So instead if we work with the old dual program and scale our variables p;, ®¢ and
U, by % we still get a feasible solution to the new dual program.
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Setting the Dual Variables

Let o is any CCE of the game. Set
1
e 4= E [Costi(f)]
1
e O, = 5 +0e - E [le(F)]

fo

Costy(f;,0-5) <> Wey - (ae(le(0) + Wey) + be)

ecf;

ect; ecf;

ect;

It is a feasible solution to the dual program.




Bound on PoA : |

> a2 E (=300 B[]

frv ~
ece © 7 ecE freo

< E [Z Ge.zg(f)] [Jensen]

eeN

< f@NEU [Z COStj(f)] = ZfE [Cost;(f)]

ecN JeN ~



Bound on PoA : I
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1
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ec
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Bound on PoA : I

Primal-Sol >Z<§ . [Cost;(f) 252 -1 e f [l (F)]?

~a NO'

jGN ee€
1
> 5 wa Cost;(f) T e Zf@wEU[Costj(f)]
ec
45 -1
= i Z fLEU[COStJ(f)]

ecf

Primal is (1 + ) appro><|mate solution to the optimal solution. So we get a

462

1
bound of (1 + %) T
where ¢ is the golden ratlo

\[you will geta bound of 1 + ¢
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Definition

M: Set of mitems
N: Set of n players

Foreach playerj e NV, v; : 2M — R>q is the valuation function of player j of
T € M. v;is submodular.

Each playerj submits a bid b; € RZ, which follows )" b; < v;(T) forall T € M.
o ieT

Let W;(b) denote the set of items won by playerj € A" when the bids are b.

Let p(i, b) is the second highest bid for item / when the bids are b.

Let u;(b) be the utility of playerj when the bids are b. Then

40) =W (B) = & p(.b)

Auctions of each item follows Second-Price auctions rule.

GOAL: Maximize the social welfare of the players V(b) = > v;(W;(b))

JEN
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Property of Biddings

Theorem
Vjie N,VT C M, Vb eRI", 3b;(T) € RY, such that

uj(b;(T),b—j) > v;(T) — Z max {bj}
ieTj "TeN\{}

LetT={1,...,i}. Takeb =vi(1,2,. ..,/')—\/j(1,2,...,/—1).Takebj(T):bj‘

Observe: > bi; < vi(T") for all T/ C T by submodularity and for T = T" its equality.
ieT’



Proof of Theorem

ui(by(T), b)) = vi(T*) = Y max {bj}

e pen)
> V() — b bt — b
> vi(T") ;;j,gﬁj}{ i} + L%:T* b max { U}]

> vi(T) = Zj,emj\/a\%}{bu'}

ieT
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LP Formulation

° X = Variable for playerj winning item T.

)

maximize Z ZXJT -vi(T)

TCMjeN

subject to ZZXJT <1 VieM,
JEN ieT

This constraint makes sure no item is over-allocated
i.e. each item is sold to only one player.




LP Formulation

° X = Variable for playerj winning item T.

)

maximize Z ZXJT -vi(T)

TCMjeN
subject to ZZX <1 VieM,
JEN ieT
ijTgl VjeN,
TcM

/ XjTZO VJ'GN,TQM

This constraint makes sure each agent receives exactly
one set from 2M.




Dual Program

minimize Zyj + Z Z;
JEN iem
subject to y; +ZZ’ >vi(T) VjeN, TCM,
ieT
z; >0 Vie M,

y; >0 VjieN
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Setting the Dual Variables

Given a CCE o of the game, we set the dual variables as follows:
° Y= b]E [uj(b)] forallj e NV,

ez=E [maxb,j] foralli € M.
b~o | JEN

Since o isan CCE

b~o b~o
By the theorem
ui(bi(T),b_;) > vi(T) — max {bi} > vi(T) — max{b;
7). b5) 2 () = 32 mas, (b 2 4(T) = 3 mas(oy )

So E [uj(b)] >vi(T) = > E [max{b,-j/}} . So it is feasible solution to the dual
b~o ,'GTbNU j’EN
program.



Bound on PoA

Primal-Sol < begg[uj(b)] +> E [%%({b,-j}}
IeEM

jeN
=E LZNuAb)] HE 12 %{bu}]
<2 E [V(b)]

b~o



Bound on PoA

Primal-Sol < begg[uj(b)] +> E [%%({b,-j}}
IeEM

jeN
=E LZNuAb)] HE 12 %{bu}]
<2 E [V(b)]

So we get a bound of 2.
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M: Set of m clients (Indexed by /)
N Set of n service providers (Indexed by j)
L: Set of locations (Indexed by ()

Each playerj € A has its strategy set of locations S; C L. S = X §;
JEN
Each clienti € M has some value m; > 0 for the service money he is wiling to
pay.
Thereis acostc(l,i) for serving the clienti € M from the location! € L
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More Definitions

Each supplier chooses a single location [ € S; to set up a facility and offers prices
to the clients.
Lets € S be any strategy profile.
e K(s): Setof locations chosen by the suppliersinsi.e. K(s) = U {s;}
JEN
e ps(i,)): Price charged from client i by supplierj in strategy profile s.

Pi(i,1,s—;): Profit of supplier j from client/ when it is served from location (
and the other suppliers are playings_;.

Dj(s): Savings of client i in strategy profile s which is m; — ps(i, SP(i)).

Total utility of the supplierj e Nisuj(s) = > Pi(i,sj,5-)

i:SP(i)=j
e V(s): Social welfare of the strategy profile s, W(s) = >~ u;(s) + >_ Di(s)
JEN iemM
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Choosing Prices

Theorem

For any strategy profile s, for any client i and supplier j, SP(i) = j
) elep) = pinelgy. )

i .7 ) = B / ) i [’ '
(i) ps(i,j) = max {C(SJ i) zezc?éi’{l{s,}c( /)}

Since prices charged by suppliers doesn’t depend on which supplier charges we
can as well take all the locations distinct.

min c(l',;i) —c(l,i) Ifc(l,i) <c(l,i
b5y — | redtihi S0 =0l el <ot
0 Otherwise

(5) = Y uj(s) + 3 08) = 3 mi — (S )

JEN ieM ieM
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LP Formulation

* X := Variable indicating if the supplierj serves the client from location L.

° Xy = Variable indicating if the supplierj opens a facility at location (.

maximize Z Z Z(T{'/ —c(l,)) X,

JEN leS;ieM
subject to ZZXW <1 VieM,
jeN[GSj
Zxﬂgl Vie L,
JEN
Zxﬂgl VjeN,
KeS;
<X1 VieM,jeN,ieM, €S,
>0 VieM,jeN,leS

J
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Dual Program

We denote the dual variables by {o;}ieas {Bitiem. {Vi}ier and {ZU.[},-eMJGNJst.

minimize Z aj + Z Bi + Z N

JEN ieEM leL
subject to ﬂ,-—l—ZU[Zm—C,-[ VieM,jeN, €S,
’yz—l—aszZlﬂ VieN, LeS,
ieM
aj >0 VjeN,
B >0 VieM
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Setting the Dual Variables

We set the dual variables as follows:
°a=E [uj(s)] forallj e V.
o 3= SIE [Dj(s)] foralli € M.

°z,=E (Pi(i,l,s_j)] forallie M,je Nandl € S;.



Setting the Dual Variables

We set the dual variables as follows:
o= E [uj(s)] forallj e V.
Bi = SIE [Dj(s)] foralli € M.

i = E (Pi(i,l,s_j)] forallie M,je Nandl € S;.
Define Wi(s) = uj(s) if | € K(s) and s; = [ for somej € N and otherwise 0.

Theny = S]E [W(s)] foralll € L.

z



Feasibility Checking

o m — ps(i,SP(i)) > m —c(l,i) forany l € £. Now P;(i,1,s_;) # 0when [ = SP(i).
Then clearly mj — ps(i, SP(i)) + P;(i, SP(i),s_j) = m — (SP( ), i) and for other
locations P;(i,l,s_;) = 0. So the ﬂrst constraint is satisfied



Feasibility Checking

o m — ps(i,SP(i)) > m —c(l,i) forany l € £. Now P;(i,1,s_;) # 0when [ = SP(i).
Then clearly mj — ps(i, SP(i)) + P;(i, SP(i),s_j) = m — (SP( ),i) and for other
locations Pj(i,1,s_;) = 0. So the first constraint is satisfied

o Ifl e K(s)thenW(s) = > Pi(i,[,0_;) for somej € N such thats; = [. So it
ieM

satisfies the second constraint. If [ ¢ KC(s). uj(s) > Pi(i,l,s_;) since o is a
CCE. So the second constraint is satisfied.



Bound on PoA

> o+ > Biisthe expected social welfare under the distribution o.
JEN ieM

> W(s) is at most the social welfare since o is a CCE.

So by Weak Duality

Primal-Sol <Zaj—|—25,+27 <2- E[V(s)]

JeEN ieM le
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