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CHAPTER

Finding Closest Pair of Points

FIND CLOSEST
Input: Set S ={(x;,y;) | xi,y; € R, Vi € [n]}. We denote P; = (x;,y;)-
Question:  Given a set of points find the closest pair of points in R? find P;, P; that are at minimum [, distance

i.e. minimize \/(xi - Xj)z + (yi — yj)2~

1.1 Naive Algorithm

Now the naive algorithm for this will be checking all pairs of points and take their distance and output the minimum one.
There are total () possible choices of pairs of points. And calculating the distance of each pair takes O(1) time. So it will
take O(n?) times to find the closest pair of points.

Idea: V P;, P; € S find distance d(P;, P;) and return the minimum. Time taken is O(n?).

1.2 Divide and Conquer Algorithm

Below we will show a Divide and Conquer algorithm which gives a much faster algorithm.

Definition 1.2.1: Divide and Conquer

« Divide: Divide the problem into two parts (roughly equal)

« Conquer: Solve each part individually recursively. If the subproblem sizes are small enough, however, just
solve the subproblems in a straightforward manner.

« Combine: Combine the solutions to the subproblems into the solution.

1.2.1 Divide

So to divide the problem into two roughly equal parts we need to divide the points into two equal sets. That we can do
by sorting the points by their x—coordinate. Suppose S* denote we get the new sorted array or points. And similarly we
obtain SY which denotes the array of points after sorting S by their y—coordinate.
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Algorithm 1: Step 1 (Divide) (Pr, P ZL\) :
Function Divide: \.I P (PR, PR)
Sort S by x—coordinate and y—coordinate :

S§* «— S sorted by x—coordinate N -7

SY «— S sorted by y—coordinate [

X «— | 7| highest x—coordinate :

§ «— | 5| highest y—coordinate |

SL<—{Pi|xi<f,Vi€[n]} °:
|

SRe—{P; | x; 2 %, Vie[n]} ——

1
2
3
4
5
6
7
8

1.2.2 Conquer

Now we will recursively get the pair of closest points in S; and Sg. Suppose the (P~, PZL) are the closest pair of points in

St and (Pf, Pf) are the closest pair of points in S.

Algorithm 2: Step 1 (Solve Subproblems)

1 Function Conquer:

2 Solve for Sy, SK.

(PE, PL) are the closest pair of points in Sr.
(PR, PE) are the closest pair of points in Sg.
8t =d(PL,PL), 8% = d(PR, PF)

3
4
5
6 Smin «— min{s, 58}

1.2.3 Combine
Now we want to combine these two solutions.

Question 1.1: We are not done

Is there a pair of points P;, P; € S such that d(P;, Pj) < Smin

If Yes:

« One of them must be in S; and the other is in Sg.
« x—coordinate € [X — Smin, X + Omin]-

. |yi - yj| < Smin
So we take the strip of radius §,,;, around x. Define T = {P; € S | |x; = X| < Spmin}

X — 5mi71 }+(5min
(P, Py) !
T T (PE.Pf)
. I ¢ \.é/
______+—.——————y
L ] °
|
L] P ' L]
| .
° |
—~ S~

St b SR

We now sort all the points in the T by their decreasing y—coordinate. Let T be the array of points. For each P; € T, define
the region
T;={P; €Ty | 0 L yj —y; < Spin,j > i}
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Lemma 1.2.1

Number of points (other than P;) that lie inside the box is at most 8 P;
Proof:  Suppose there are more than 8 points that lie inside the box apart from P;. T; i Smin
The box has a left square part and a right square part. So one of the squares contains

at least 5 points. WLOG suppose the left square has at least 5 points. Divide each
square into 4 parts by a middle vertical and a middle horizontal line. Now since there

are 5 points there is one part which contains 2 points, but that is not possible as those 5
two points are in Sy and their distance will be less than J,,;, which is not possible. min
Hence, contradiction. Therefore, there are at most 8 points inside the box. ]

Hence by the above lemma for each P; € T, there are at most 8 points in T;. So
for each P; € T; we find the d(P;, P;) and if it is less than §,,;, we update the points 5

and the distance

1.2.4 Pseudocode and Time Complexity

Assumption. We will assume for now that for all P;.P; € S we havex; # x; andy; # y;. Later we will modify the pseudocode
to remove this assumption

Algorithm 3: FIND-CLOSEST(S)

Input: Set of n points, S = {(x;,y;) | xi,yi € R, Vi € [n]}. We denote P; = (x;,y;).
Output: Closest pair of ponts, (P;, P, §) where 6 = d(P;, P;)

1 begin

2 if |S| < 10 then

3 L Solve by Brute Force (Consider every pair of points)

4 S§* «— S sorted by x—coordinate, SY «— S sorted by y—coordinate
5 X «— | 7] highest x—coordinate, y «— | 5] highest y—coordinate
6 Sl e— (P |x;<x Vie[n]}, SRe—{P;|xi>%x Vie]|[n]}

7 (P, PL ) «— FinD-Crosest(SF), (PR, PR, %) «— FIND-CLOSEST(SF)
8 Smin «— min{s*, 58}

9 if Opmin < O then

10 LPl <—Pf,P2<—P§

11 else

12 LPl <—P{“,P2<—P2L

13 T(_{Pil |xi_§| Samin}

14 T, «— T sorted by decreasing y—coordinate

15 for P € T, do

16 U «— Next 8 points

17 for P € U do

18 if d(P,P) < 8pin then

19 Smin «— d(P, P)

20 L (Py,P,) «— (P, DP)
21 return (Py, Py, 61min)

Notice we used the assumption in the line 5 for finding the medians. So the line 4 takes O(nlogn) times. Lines 5,6 takes
O(n) time. Since X is the median, we have |S*| = [ 2] and |S®| = [%]. Hence FinD-CLosEsT(S") and FIND-CrLosEsT(SX)
takes T (%) time. Now lines 8 — 12 takes constant time. Line 13 takes O(n) time. And line 14 takes O(nlogn) time. Since
U has 8 points i.e. constant number of points the lines 16 — 20 takes constant time for each P € T,. Hence the for loop at
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line 15 takes O(n) time. Hence total time taken

T(n) = O(n)+O(nIogn)+2T(g) — T(n) = O(nlog?n)

1.3 Improved Algorithm for O(nlogn) Runtime

Notice once we sort the points by x—coordinate and y—coordinate we don’t need to sort the points anymore. We can just
pass the sorted array of points into the arguments for solving the smaller problems. Their is another time where we need
to sort which is in line 14 of the above algorithm. This we can get actually from SY without sorting just checking one by
one backwards direction if the x—coordinate of the points satisfy |x; — X| < nin- So

T, = REVERSE({P; € SV | |x; = X| < Spmin})

So we form a new algorithm which takes the input $* and SY and then finds the closest pair of points. Then we will use
that subroutine to find closest pair of points in any given set of points.

Algorithm 4: FIND-CLOSEST-SORTED(S*, SY)
Input: Set of n points, S = {(x;,y;) | xi,y; € R, Vi€ [n]}.
S§* and SY are the sorted array of points with
respect to x—coordinate and y—coordinate

respectively
Output: Closest pair of ponts, (P;, P, §) where
5 = d(Pi, PJ)
1 begin
2 if |S| < 10 then
3 L Solve by Brute Force
4 X «— | 5| highest x—coordinate
5 y — L%J hlghest y—coordinate Algorithm 5: FIND-CLOSEST(S)
6 Sl e— {P;eS |xi<x Vie[n]} Input: Set of n points,
7 S!L,<—{Pi€Sy|xi<f} S={(xi,yi) | xi,y; € R, Vi€ [n]}.
s | SRe—{(PeS |x 2% Vie [n]} We denote P = (xi, ).
S}yz (P esSY|x; 2 %) Output: Closest pair of ponts, (P;, P}, )
10 (P{, Py, 6") «— FinD-CLOSEST-SORTED(S", S}) besi where 6 = d(P;, P;)
11 (PR, P, %) «— FIND-CLOSEST-SORTED(SX, S¥) : eg;?m < 10 then
12 Smin «— min{8", 5%} 3 L Solve by Brute Force
13 if 8, < ST then . .
14 L P, «— PR p,  pR 4 S* «— S sorted by x—coord?nate
! 2 SY «— S sorted by y—coordinate
15 else 6 return FIND-CLOSEST-SORTED(S™, SY)
16 | Py e— P, Py — P}
17 T<_{Pl | |xi_f| S5min}
18 T, «— REVERSE({P; € SY | |x; = X| < Smin})
19 for P € T, do
20 U «— Next 8 points
21 for P € U do
22 if d(P, P) < 8, then
23 Spmin «— d(P, P)
24 L (P1,Py) «— (P, P)
25 return (Py, Py, Smin)

This algorithm only sorts one time. So time complexity for FIND-CLOSEST-SORTED(S*, §Y) is
T(n)=2T (g) +0(n) = T(n) =O(nlogn)

and therefore times complexity for FIND-CLOSEST(S) is O(nlogn).
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1.4 Removing the Assumption

For this there nothing much to do. For finding the median X if we have more than one points with same x—coordinate
which appears as the I_'E’J highest x—coordinate we sort only those points with respect to their y—coordinate update the
S* like that and then take |_§J highest point in S*. We do the same for SY and update accordingly. All this we do so that

S and S has the size 3.
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Median Finding in Linear Time

MEDIAN FIND
Input: Set S of n distinct integers

Question: Find the [%J " smallest integer in S

2.1 Naive Algorithm

The naive algorithm for this will be to sort the array in O(nlogn) time then return the [%Jth element. This will take
O(nlogn) time. But in the next section we will show a linear time algorithm.

2.2 Linear Time Algorithm

In this section we will show an algorithm to find the median of a given set of distinct integers in O(n) time complexity.
Consider the following two problems:

RANK-FIND (S, k)
Input: Set S of n distinct integers and an integer k < n
Question: Find the k** smallest integer in S

APPROXIMATE-SPLIT(S)
Input: Set S of n distinct integers

Question: Given S, return an integer z € S such that z where rank(z) € [% %"]
2.2.1 Solve RANK-FIND using APPROXIMATE-SPLIT
Algorithm 6: RANK-FIND(S k)
Input: Set S of n distinct integer and k € [n]
Output: k" smallest integer in S
1 begin
2 if |S| < 100 then
3 L Sort S, return k" smallest element in S
4 z «— APPROXIMATE-SPLIT(S) (z is the r*" smallest element for some r € [% %”])
5 Spe—{xeS|x<z})Spe—{xeS|x>z}
6 if k < |S.| then
7 | return RaNk-FIND(SL, k)
8 | return RANK-FIND(Sg, k — [SL|)
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Certainly if we can solve RANK-FIND(S, k) for all k € [n] we can also solve MEDIAN-FIND. We will try to use both
the problems and recurse to solve RANK-FIND in linear time.
n

In the above algorithm rank(z) € [%, %"] So § < ISl ISkl < %. For now suppose RANK-FIND(S, k) takes Tgp(n)

time and APPROXIMATE-SPLIT(S) takes Tys(n) time. Then the time taken by the algorithm is

Trr(n) < O(n) + Tas(n) + Trr (%n)

2.2.2 Solve APPROXIMATE-SPLIT using RANK-FIND

We first divide S into groups of 5 elements. So take ¢ = {%] Now we sort each group. Since each group have constant size
this can be done in O(n) time. So now consider the scenario:

Su />Median of Medians = z
X1,1 X21 X3,1 X|#/2),1 Xt-1,1 Xt1
X1,2 X22 X32 X|#2],2 Xt-1,2 Xt2
x1,3 x2,3 X3,3 ......... ......... xt—1,3
X1,4 X2.4 X34 X|#2],4 Xt-1,4 S,
X1,5 X25 X35 X\421,5 Xt-15
Sl SZ 53 ......... SI_t/ZJ ......... St—l St
All medians < z All medians > z

After sorting each of the groups we takes the medians of each group. Let z be the median of the medians. We claim
that rank(z) € [%, %"]

Algorithm 7: APPROXIMATE-SPLIT(S)

Input: Set S of n distinct integers

Output: An integer z € S such that z where rank(z) € [% %"]
1 begin
2 if |S| < 100 then
3 L Sort, return Exact median
1| t—[5]

S; «— i*" block of 5 elements in S for i € [t —1]
S; «— Whatever is left in S
fori € [t] do

L Sort S;, Let h; be the median of S;

0 T —{h;|i€l[t]}
10 return RANK-FIND (T’ I_%J)

e N & W

So in the picture among elements in upper left the highest element is z and among the elements in lower right the
lowest element is z. We will show that the number of elements smaller than z is between % and %”. Lets call the set of
elements in upper left box is S,, and the set of elements in lower right box is Sy.
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Lemma 2.2.1
1Sul, 1S4l = %

Proof: |Su| > 3% |L].Forn>100,3|%]| > 2. Hence |S,| > 2. Now similarly [Sq| >3 |4 -1] > 2. [ ]

Lemma 2.2.2

Number of elements in S smaller than z lies between % and %".

Proof: Now number of elements in S smaller than z > |S,| > 7. The number of elements greater than z > |Sq| > 7. So

number of elements in S smaller than z < n— number of elements greater thanz < n— % = %’. [ ]

Hence the APPROXIMATE-SPLIT(S) takes time

Tas(n) = O(n) + Tgp (g)

2.2.3 Pseudocode and Time Complexity

Hence using APPROXIMATE-SPLIT the final algorithm for RANK-FIND is the following:

Algorithm 8: RANK-FIND(S k)
Input: Set S of n distinct integer and k € [n]
Output: k" smallest integer in S

1 begin

2 if |S| < 100 then

3 L Sort S, return k' smallest element in S

1| te—[4]

5 S; «— i*" block of 5 elements in S for i € [t —1]
6 S; «— Whatever is left in S

7 fori € [t] do

8 L Sort S;, Let h; be the median of S;

o | Te—{h|ie[t]}

10 | z«— Rank-Finp (T, |%])

11 Spe—{xeS|x<z}Spe—{xeS|x>z}
12 if k < |S;| then
13 L return RANK-FIND(Sy, k)

14 return RANK-FIND(Sg, k — |SL|)

Replacing T4s(n) in the time complexity equation of Trr(n) we get the equation:

n 3n
Trr(n) < O(n) + Tgr (E) +Trr (Z)
Let Trr(n) < kn++Tgr (2) + Trr (¥). We claim that Tgr(n) < cn for some ¢ € N for all n > ny where ny € N. By
induction we have

cn  3cn 19¢
T <kn+ —+—=k+—
) < e 54 250 = (s 5o

To have k + % < ¢ we have to have k + % < ¢ & ¢ > 20k. So take ¢ > 20k and our claim follows. Hence

Trr(n) = O(n). Since we can find any k" smallest number in a given set of distinct integers in linear time we can also
find the median in linear time.
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Polynomial Multiplication

PoLYNOMIAL MULTIPLICATION

Input: Given 2 univariate polynomials of degree n — 1 by 2 arrays of their coefficients (ay, ..., a,-1) and
(bo,...,by_1) such that A(x) = ag+ax+---+ay_1x" ' and B(x) = by +bix+---+b,_1x"!
respectively

Question: Given 2 polynomials of degree n — 1 find their product polynomial C(x) = A(x)B(x) of degree 2n —2
by returning the array of their coefficients.

3.1 Naive Algorithm

We can do this naively by calculating each coefficient of C in O(n) time since for any i € {0,...,2n — 2}

i
Ci = E ajb,-_j
Jj=0

Since there are 2n — 1 = O(n) total coefficients of C it takes total O(n?) time. In the following section we will do this in
O(nlogn) time.

3.2 Strassen-Schonhage Algorithm

Before diving into the algorithm first let’s consider how many ways we can represent a polynomial. Often changing the
representation helps to solve the problem in less time.

+ Coefficients: We can represent a polynomial by giving the array of all its coefficient.

« Point-Value Pairs: We can evaluate the polynomial in distinct n points and give all the point-value pairs. This also
uniquely represents a polynomial since there is exactly one polynomial of degree n — 1 which passes through all
these points.

Theorem 3.2.1
Given n distinct points (xo,Yo), - -, (Xn—1,yn—1) in R? with x; # x; for all i # j there is a unique (n — 1)—degree
polynomial P(x) such that P(x;) = y; foralli € [n— 1]

Since we want to find the polynomial C(x) = A(x)B(x) and C(x) has degree 2n — 2, we will evaluate the polynomials
A(x) and B(x) in 2n — 1 distinct points. So we will have the algorithm like this:
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Coefficient 40, - n-1
. €05 - -5 C2n-2

Representation

bO, cees bnfl

A
Y

Point-Value A(xp),...,A(xon—2)
Representation > C(x0),...,C(x2n-2)
at 2n — 2 points B(xp),...,B(x2n—2)

3.2.1 Finding Evaluations of Multiplied Polynomial

Suppose we were given A(x) and B(x) evaluated at 2n — 1 distinct points xy, . . ., X2,—2. Then we can get C(x) evaluated
at xgp,...,Xon—2 by
C(x;) = A(x;)B(x;) Vi€ [2n—-2]

Since there are O(n) many points and for each point it takes constant time to multiply we can find evaluations of C at
X0, - -+ s Xon—2 in O(n) time.

3.2.2 Evaluation of a Polynomial at Points

n-1 .
Suppose there is only one point, xo. Can we evaluate an n — 1 degree polynomial A(x) = Y, a;x* at x efficiently?

i=0

We can rewrite A(x) as
A(x) = ag+x(ar +x(az +x(as + -~ (an-1+x(an)) - -)))

In this represent it is clear that we have to do n additions and n multiplications to find A(x(). Hence, we can evaluate an
n — 1 degree polynomial at a point in O(n) time

But we have O(n) points. And if each point takes O(n) time to find the evaluation of the polynomial then again it
will take total O(n?) time. We are back to square one. So instead we will evaluate the polynomial in some special points,
and we will evaluate in all of them in O(nlog n) time. So now the problem we will discuss now is to find some special n
points where we can evaluate an n — 1-degree polynomial in O(nlogn) time.
Idea: Evaluate at roots of unity and use Fast Fourier Transform

n-1 X
Assume n is a power of 2. We have the polynomial A(x) = 3} a;x'. So now consider the following two polynomials
i=0

n_ n_
Ao(x) = ag+ apx +agx?+ -+ ap_px2 ! Ai(X) = ar+asx +asxi+- -+ ap_ix2 !

Certainly we have
A(x) = Ap(x") + xA; (x7)

Hence we can get A(1) and A(-1) by

A(1) = A1)+ A1 (1) A(-1) = Ap(1) — Ay (1)

n

Hence like this by evaluating two 5 — 1 degree polynomials at one point we get evaluation of A at two points. More

generally for any y > 0 we have

AWY) = A(y) +VyAi(y) A=) = Ao(y) — VyAi(y)
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So by recursing like this evaluating at 1, —1 we can get evaluations of A at n*" roots of unity.
Let

; k k
wk = n'" root of unity for k € [n—1] = eln 2™ = cos (—Zn) +isins (—Zn)
n n

Hence we have

A (wﬁ) = Ay (a)flk) + wﬁAl (wflk) =Ag ((o’;) + w,I;Al (w’;)
2 2
A (—wﬁ) =A (a),?Jrk) =Ap (w,zlk) - a)ﬁAl (a),zlk) =Ap (a)];) - w],iAl (a)];)
2 2
Hence now we will solve the following problem:
RECURSIVE-DFT
n-1 X
Input: (ao, - . -, an—1) representing (n — 1)—degree polynomial A(x) = 3, a;x*
i=0

Question: Find the evaluations of the polynomial A(x) in all n” roots of unity

Since A and A; have degree 7 — 1 we can use recursion. Hence, the algorithm is

Algorithm 9: RECURsIVE-DFT(A)

Input: A = (ay,...,a,_1) such that A(x) = ag + a1 x + -+ + a@p_1x"!
Output: A(x) evaluated at n*" roots of unity X for all k € [n— 1]
1 begin
2 if n == 1 then
3 L return A[0]
4 Ay «— (A[0],A[2],...,A[n-2])
5 Ay — (A[1],A[3],...,Aln—-1])
6 Y% «— RECURSIVE-DFT(Ag)
7 Y! «— RECURSIVE-DFT(A;)
8 fork=0t0 % -1do
0 Y[K] — YO[k] + kY [K] /] A(ok) = A (w’;) +okA, (w’;
2 2
10 Y [k +2] — YO[k] — g Y1 [K] /] A(-wf) = 4, (w';)—w’,;Al (w’;
2 2
11 | returnY

~—— ——

Time Complexity: T(n) = 2T (4) + O(n) = O(nlogn).

Therefore, we can evaluate an n — 1 degree polynomial in all the n'” roots of unity in O(nlog n) time. Hence, with
this algorithm we will get evaluations of the polynomial C(x) = A(x)B(x) in all the 2n*" roots of unity. Now we need to

interpolate the polynomial C(x) from its evaluations. We will describe the process in the next subsection.

3.2.3 Interpolation from Evaluations at Roots of Unity

In this section we will show how to interpolate an n — 1 degree polynomial from evaluations at all n** roots of unity.

Previously we had
0-2 A G )

n 1 (")91 w Co
C (a),ll) 1 o) wl? e ol (1) c1
C(w?) |21 o 0¥ . D) cy
C (w;;*l) 1 w;’_l w2 . D= |
R —— N——
Y V= Vandermonde Matrix C

Now Vandermonde matrix is invertible since all the n” roots are distinct. Therefore, C = V~1Y. But we can not do
a matrix inversion to interpolate the polynomial because that will take O(n?) time. Instead, we have this beautiful result:
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Lemma 3.2.2
(V‘l)jk = —wn] forall0 < j,k<n-1

Proof:  Consider the matrix n X n matrix T such that (T);x = %w,; ¥ Now we will show VT = I This will confirm that

=T. Now
1
n-1 ; —Zl =1 when i =k
i—k iz

S = St Lot <1 =8
- - 2 =0 wheni#k

nl-ow

Hence in VT there are 1’s on the diagonal and rest of the locations are 0. Hence, VT =1.So V™! = T. ]

Hence, we can see the inverse of the Vandermonde matrix is also a Vandermonde matrix with a scaling factor. We will
denote y; = C (w},) for i € [n— 1] since these values are given to us somehow, and we have to find the corresponding
polynomial. Therefore, we have

co 11 1 - 1 "
¢ 1 (x);l w—1~2 L w—l»(n—l) n
o |1 w,? w22 ... =2 (n=1) ”
n
Cn-1 1 w;(n—l) w-(-D2 . -(n=1)-(n-1) Ynot
) ———
¢ V-1 Y

Observation. nc; = yo +y1w,” + 1y, +- -+ + yn,lw;("_l)j forallje[n-1].

We can also see this situation as we have the polynomial Y (x) = yo + y1x + yox*+- - - + yp_1x" ! and ¢; is just Y (x)
evaluated as w,’ = w), / multiplied by n. Hence, we just re-index the n*? roots of unity and evaluate Y n'” roots of unity
in O(nlog n) time using the algorithm described in subsection 3.2.2
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Dynamic Programming

Definition 4.1: Dynamic Programming ]

Dynamic Programming has 3 components:
1. Optimal Substructure: Reduce problem to smaller independent problems
2. Recursion: Use recursion to solve the problems by solving smaller independent problems

3. Table Filling: Use a table to store the result to solved smaller independent problems.

4.1 Longest Increasing Subsequence

LONGEST INCREASING SUBSEQUENCE

Input: Sequence of distinct integers A = (ay, ..., an)

Question: Given an array of distinct integers find the longest increasing subsequence i.e. return maximum
size set S C [n] such thatVi,j€S,i<j = a; < aj

4.1.1 O(n?) Time Algorithm

Given A = (ay,...,ay) first we will create a n-length array where i*" entry stores the length and longest increasing
subsequence ending at g;. Certainly we have the following recursion relation
LIS(k) =1+ max {LIS(j)}
Jj<k, aj<ay

since if a subsequence S C [n] is the longest increasing subsequence ending at a; then certainly S — {k} is the longest
increasing subsequence which ends at a; < ay for some j < k. Hence, in the table we start with 1st position and using the
recursion relation we fill the table from left. And after the table is filled we look for which entry of the table has maximum
length. So the algorithm will be following:

Algorithm 10: LIS(A)
Input: Sequence of distinct integers A = (ay, ..., a,)
Output: Maximum size set S C [n] suchthatVi,j€S5,i<j = a; <a;.

1 begin

2 Create an array T of length n

3 fori € [n] do

4 T[i][1] «— 1+ max{T[j][1]: j <k, a; < ar} // Finds LIS[i]
L T[i][2] «— T[T[i][1] - 1][2]

Index «— max{T[j][1]: j € [n]}

7 return T [Index]

5
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Time Complexity: For each iteration of the loop it takes O(n) time to find LIS[i]. Hence, the time complexity of this
algorithm is O(n?).

4.1.2 O(nlogn) Time Algorithm

In the following algorithm we update the longest increasing sequence every time we see a new element of the given
sequence. At any time we keep the best available sequence.

Idea. We can make an increasing subsequence longer by picking the smallest number for position k so that there is an
increasing subsequence of length k. Doing this we can maximize the length of the subsequence.

Theorem 4.1.1

If S C A is the longest increasing subsequence of length ¢ then for any k € [¢] the number S(k) is the smallest
number in the subarray of A starting at first and ending at S(k) such that there is an increasing subsequence of
length k ending at S(k).

Proof:  Assume the contrary. Suppose 3 k € [t] such that k is the smallest number in [#] such that S(k) is not the
smallest number to satisfy the condition. Now denote the subarray of A starting at first and ending at S(k) by Ag. Now
let x € Ax be the smallest number in Ag such that there is an increasing subsequence of length k ending at x. Certainly
x < S(k) by our assumption. Now since k is the smallest index which does not satisfy the given condition, V j € [k — 1],
S(j) is the smallest number in A; such that there is an increasing subsequence of length j ending at S(j). Then consider
the subsequence {S(1),...,5(k —1),x,S(k),S(k+1),...,5(t)}. This is an increasing subsequence of A and has length
t + 1. But this contradicts the minimality of S. Hence, contradiction # Every element of S follows the given condition. ®

So we will construct an increasing subsequence by gradually where each step this property is followed, i.e. at each
step we will ensure that the sequence built at some time have the above property. So now we describe the algorithm.

Algorithm 11: QuickLIS(A)

Input: Sequence of distinct integers A = (ay, ..., an)
Output: Maximum size set S C [n] suchthatVi,j€S,i<j = a; <a;.
1 begin
2 Create an array T of length n with all entries 0
3 Create an array M of length n
4 fori=1,...,ndo
5 L M[i] «— o0
6 fori=1,...,ndo
7 k «—Find the smallest index such that M[k] > a; using BINARY-SEARCH
8 M[k] «— a;
9 T[i] «— M[k-1] // Pointer to the previous element of the sequence

10 I «— Largest I such that M[I] is finite
11 Create an array S of length [
12 fori=1I,...,1do

13 if i = [ then

14 S[1] «— M[I]

15 Continue

16 S[i] «— T[S[i+ 1]] // T[S[i+1]] is pointer to previous value of sequence
17 return ([,S)

Time Complexity: To create the arrays and the first for loop takes O(n) time. In each iteration of the for loop at line 6
it takes O(log n) time to find k and rest of the operations in the loop takes constant time. So the for loop takes O(nlogn)
time. Then To find [ and creating S it takes O(n) time. Then in the for loop at line 12 in each iteration it takes constant
time. So the for loop at line 12 takes in total O(n) time. Therefore, the algorithm takes O(nlogn) time.

We will do the proof of correctness of the algorithm now.
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Lemma 4.1.2

For any index M[k] is non-increasing

Proof: Every time we change a value of M[k] we replace by something smaller. So M[k] is non-increasing. [ ]

We denote the state of array M at i*” iteration by M’. Then we have the following lemma:

Lemma 4.1.3
At any time i, M'[1] < M'[2] < --- < M'[n]

Proof: We will prove this by induction on i. The base case follows naturally. Now for i*" iteration suppose M~![k]
is replaced by x;. Then we know V j < k we have M'[j] < x;. By inductive hypothesis at time t — 1 we have M as
an increasing sequence. Now before replacing M*~![k] < M*"[k+1] < --- M ![n]. Now by Lemma 4.1.2 M*~1[k] is
nonincreasing. So we still have M71[1] < --- M7 1[k-1] < x; < M7 [k+1] < -+ < M'"1[n]. Therefore, M’ is an
increasing subsequence. Hence, but mathematical induction it holds. ]

Now suppose at i*" iteration k; is largest such that M?[k;] < co. Then S? denote the set constructed like the way
we constructed at line 12-16 in the algorithm i.e.

S'lk]=M'[ki] and  S'[j1=TIS'[j+1]] Vje[k-1]

Lemma 4.1.4

After any i*" iteration, for k € [n] if M'[k] < oo then S?[k] stores the smallest value in xy, . . ., x; such that there is
an increasing subsequence of size k that ends in S'[k].

Proof: We will use induction on i. Base case: This is true after first iteration since only M![1] < co. So this naturally
follows.

Suppose this is true after i iterations. Now at (i +1
xi+1. Then we have

)" iteration suppose t be the smallest index such that M[t] >

M1 < - <M [t—1] <xjpg S M[t] <--- <M [n] = S[1] <--- < S'[t—1] < x141 < S'[t],..., S [Kki]

Now for k < t — 1t is true by the inductive hypothesis. For k > t and if M™*![k] < oo then S*![k] is the smallest value in
X1, ..., Xi+1 such that there is an increasing subsequence of size k that ends in S™1[k] since this was true for ith jteration.

Now only the case when k = t is remaining. If S™1[k] does not store the smallest value in x;,. .., x4 to have
an increasing subsequence of size k ending at S [k] then let x; was the smallest value to satisfy this condition where
j < i+1. Then naturally x; < x;41. Then M'[t] < x; < x41. But we t was the smallest number such that Mi[t] > xp41.
Hence, contradiction. Therefore, S'[k] is the smallest value in x;, . .., X;41 to have an increasing subsequence of size k
ending at S*![k]. Therefore, by mathematical induction this is true for all iterations. [ ]

Theorem 4.1.5

S is the longest increasing subsequence of A.

Proof:  After the n'? iteration S* = S and k, = I. Hence by Lemma 4.1.4 we can say for all k € [I], S[k] is the
smallest number such that there is an increasing sequence of length k ending at S[k]. Now we want to show that this
increasing sequence is the longest increasing subsequence of A. Suppose S is not the longest increasing subsequence.
Let T be the longest increasing subsequence of length ¢+ > [. Then suppose j < [ be the smallest index such that
S[jl # T[j]. Now S[j] is the smallest number in xy,...,x, such that there is an increasing subsequence of length j
ending at S[j]. Hence, we have S[j] < T[j]. Now for all i < j we have S[i] = T[i]. Then we form this new subsequence
T ={T[1],T[2],....T[j = 11,S[j].T[j]...., T[t]}. Certainly T has length ¢ + 1 and it is also an increasing subsequence.
But this contradicts the maximal condition of T. Hence, S is indeed the longest increasing subsequence. [ ]
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4.2 Optimal Binary Search Tree

OpTIMAL BST
Input: A sorted array A = (ay,...,a,) of search keys and an array of their probability distributions P =
(p(ar),....p(an))

Question: Given array of keys A and their probabilities the probability of accessing a; is p(a;) then return a

n
binary tree with the minimum cost where for any binary tree T, Cost(T) = X p(a;) - height .(a;).
i=1

So let T be the optimal binary search tree with ay as its root for some k € [n]. Let T; and T, denote the tree rooted
at the left child and right child of a; in T respectively. Then:

Cost(T) = pi+ Y pi (1 +height,, (al-)) > pi (1 +height,, (a,-)) - Z pi+ Y. pi-height, (a))+ Y pi- height, (a;)
i=1

i<k i>k i<k i>k

Cost(Ty) Cost(T;)

In general we will use the notation OPTCost(i, k) = COST(Tik) where Tl.k is the optimal binary tree of the subarray
Ali...k] for any i < k < n. Therefore, we arrive at the following recurrence relation

0 when i > k

OPTCost(i,k) =13 k
(i) 2 plaj) + mink{OPTCOST(i, r—1)+OPTCost(r +1,k)} otherwise
j=i i<r<

So the algorithm for constructing the optimal binary search tree is following:

Algorithm 12: OpTIMALBST(A, P)

Input: A sorted array A = (ay, ..., a,) of search keys and an array of their probability distributions
P=(p(ai),....p(an))
n
Output: Binary Tree T with the minimum search cost, CosT(T) = 3, p(a;) - height . (a;)
i=1

1 begin
2 fori=1,...,ndo
3 | OPTCost[i,i] «— (p(ai),a;), OPTCosT(0, ] «— (0, None)

ford=2,...,ndo

forie[n+1-d] do

minval «— 0

fork=i+1,...,i+d-2do
newval «— OPTCosTt[i,k — 1][1] + OPTCost[k+ 1,i+d — 1][1]
if minval > newval then

10 minval «— newoal

11 L Index «— k

O o N G e

i+d-1

12 OPTCost[i,i+d —1] «— (mim)al+ > plar), k
k=1

13 ag.left «— OPTCost[i,k — 1][2]

14 | ak.right «— OPTCost[k +1,i+d - 1][2]

15 return OPTCosT[1, n]

Time Complexity: To two for loops at line 4 and line 5 takes O(n?) many iterations. Now the innermost for loop at

line 7 runs O(n) iterations where in each iteration it takes constant runtime. So the total running time of the algorithm is
o(n®).
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Greedy Algorithm

5.1 Maximal Matching

MAXIMAL MATCHING
Input: Graph G = (V,E)
Question: Find a maximal matching M C E of G

Before diving into the algorithm to find a matching or maximal matching we first define what is a matching.

Definition 5.1.1: Matching

Given a graph G = (V,E), M C E is said to be a matching if M is an independent set of edges i.e. no two edges of
M are incident on same vertex.

| r

Definition 5.1.2: Maximal Matching

For a graph G = (V, E) a matching M C E is maximal if it cannot be extended and still by adding an edge.

There is also a maximum matching which can be easily understood from the name:

Definition 5.1.3: Maximum Matching

For a graph G = (V,E) a matching M C E is maximum if it is maximal and has the maximum size among all the
maximal matchings.

Idea. The idea is to create a maximal matching we will just go over each edge one by one and check if after adding them to
the set M the matching property still holds.

Algorithm 13: MAXIMAL-MATCHING
Input: Graph G = (V,E)
Output: Maximal Matching M C E of G

1 begin

2 M— 0

3 Order the edges E = {ey, ..., ex} arbitrarily
4 fore € E do

5 if MU {u} is matching then

6 L | M — MU {e}

7 return M
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Do we always get the largest possible matching?

Solution: Clearly algorithm output is not optimal always. We get a maximal matching sure. But we don’t get a maximum
matching always. For example the following graph

€1 €3 €2
(@] (@] (@] (@]

If we start from e; we get the matching {e;.e;} which is maximum matching but if we start from e; then we get only the
maximal matching {e;} which is not maximum. [ |
Since the algorithm output may not be optimal always we can ask the following question

How large is the matching obtained compared to the maximum matching?

This brings us to the following result:

Theorem 5.1.1
For any graph G let the greedy algorithm obtains the matching M and the maximum matching is M*. Then

1
M| > |

Proof: Consider an edge e € M* but e ¢ M. Since e wasn’t picked in M, 3 ¢’ € M \ M* such that e and e’ are incident
on same vertex. Thus define the function f : M* — M where

o) e wheneeM
e) =
e/ whene € M*\ M where ¢’ € M\ M* such thate’ Ne # 0

Now note that there are at most two edges in M* that are adjacent to an edge ¢’ € M which will be mapped to ¢’.
Hence,

MM 2 S\ M)
Therefore [f~1(e’)| < 2V e’ € M. Hence,
|M*| = MO M|+ |M*\ M| < |MnM*|+2|M\ M*| < 2|M|
Therefore we have the result |[M| > %IM*I. [ ]
Alternate Proof : Let M; and M, are two matchings. Consider the symmetric difference M; AM,. This consists of edges
that are in exactly one of M; and M,. Now in MAM* we have the following properties:

(a) Every vertex in MAM™ has degree < 2 = Each component is a path or an even cycle.

(b) The edges of M and M* alternate.

Now we will prove the following property about the connected components of MAM*.

Claim 5.1.1

No connected component is a single edge.

Proof: 'This is because let e be a connected component. So the two edges e;, e; which are adjacent to e, they
are either in both M and M* or not in M and M*. The former case is not possible because then ey, e, e are all
in either M or M* which is not possible as they do not satisfy the condition of matching. For the later case
let e € M*. Then e ¢ M. That means e, e1, e; ¢ M which is not possible since M is also a maximum matching.
By similar reasoning if e € M and e ¢ M* then also an impossible event occurs. Therefore, no connected
component is a single edge. [ ]
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Therefore, every path has length > 2. Therefore, ratio of # edges of M to # edges of M* in a path is < 2. And
for cycles we have # edges of M = # edges of M*. So in every connected component C of MAM* the ratio %Tmccll < 2.
Therefore, we have

IMNM*|+ 3 |[M*NC|
C

[M*] <>
M| IMAM*+YIMNC|
C

Hence we have |M| > %lM*|.

5.2 Huffman Encoding

HurrMmAN CODING
Input: nsymbols A = (a—1,...,a,) and their frequencies P = (fi, ..., f,) of using symbols
Question: Create a binary encoding such that:

« Prefix Free: The code for one word can not be prefix for another code
« Minimality: Minimize Cost(b) = 3, f; - LEN(b(a;)) where b : A — {0,1}" is the binary
i=1

encoding

Assignment of binary strings can also be scene as placing the symbols in a binary tree where at any node 0 means
left child and 1 means right child. Then the first condition implies that there can not be two codes which lies in the same
path from the root to a leaf. Le. it means that all the codes have to be in the leaves. Then the length of the binary coding
for a symbol is the height of the symbol in the binary tree.

We can think the frequencies as the probability of appearing for a letter. We denote the probability of appearing of

the letter a; by p(a;) = nfi . So the we can see the updated cost function

i
i=1

CosT(b) = > p(a;) - Len(b(a;))
i=1
And from now on we will see the frequencies as probabilities and cost function like this

5.2.1 Optimal Binary Encoding Tree Properties

Then our goal is to finding a binary tree with minimum cost where all the symbols are at the leaves. We have the following
which establish the optimality of Huffman encoding over all prefix encodings where each symbol is assigned a unique
string of bits.

Lemma 5.2.1

In the optimal encoding tree least frequent element has maximum height.

Proof: Suppose that is not the case. Let T be the optimal encoding tree and let the least frequent element x is at height
h; and the element with the maximum height is y with height h, and we have h; < h,. Then we construct a new encoding
tree T where we swap the positions of x and y. So in T’ height of y is h; and height of x is h,. Then

Cost(T) = CosT(T’) = (p(x)h1 + p(y)hz) — (p(x)h2 + p(y)h1) = (p(x) = p(y)) (h1 — h2)

Since p(x) < p(y) and h; < hy we have CosT(T) — CosT(T’) > 0. But that is not possible since T is the optimal encoding
tree. So T should have the minimum cost. Hence contradiction. x has the maximum height. ]
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Lemma 5.2.2

The optimal encoding binary tree must be complete binary tree. (i.e. every non-leaf node has exactly 2 children)

Proof: Suppose T be the optimal binary tree and there is a non-leaf node r which has only one child at height . By
Lemma 5.2.1 the least frequent element x has the maximum height, h,,.
Then consider the new tree T where we place the least frequent element at height # and make it the second child
of the node r. Then
Cost(T) — CosT(T) = p(x)hp — p(x)h = p(x) (hpm = h) > 0

But this is not possible as T is the optimal binary tree and it has the minimal cost. Hence contradiction. Therefore the
optimal encoding binary tree must be a complete binary tree. [ ]

Lemma 5.2.3

There is an optimal binary encoding tree such that the least frequent element and the second least frequent element
are siblings at the maximum height.

Proof: Let T be optimal binary encoding tree. Suppose x, y are the least frequent element and the second least frequent
element. And suppose b, ¢ be two siblings at the maximum height of the tree (There may be many such siblings, and if
so pick any such pair.). If {x,y} = {b,c} we are done. So suppose not. Let the frequencies of x,y, b, ¢ are respectively
p(x), p(y), p(b), p(c) and heights of x, y, b are hy, h,, and h respectively. WLOG assume p(x) < p(y) and p(b) < p(c).

Now since we know x, y have the smallest frequencies we have p(x) < p(b) and p(y) < p(c). And since b, ¢ have
the maximum height we have hy, hy < h. So we switch the position of x with b to form the new tree T’". And from T” we
swap the positions fo y and ¢ to form a new tree T”.

T//

b

S
/Q\

t] ]

Figure 5.1: Showing that the lowest probability nodes are siblings at the tree’s lowest level.

Now we will calculate how the cost changes as we go from T to T” and T’ to T”. First check for T — T’. Almost
all the nodes contribute the same except x, b. So we have

CosT(T) = CosT(T’) = (hx - p(x) + h- p(b)) = (hx - p(b) + h - p(x)) = (p(b) = p(x))(h = hy) > 0

Therefore swapping x and b does not increase the cost and since T is the optimal binary encoding tree the cost doesn’t
decrease either. Therefore the costs are equal. Hence T” is also an optimal tree.
Similarly we calculate cost for going from T’ to T" we have

CosT(T") = CosT(T") = (hy - p(y) +h - p(c)) = (hy - p(c) +h-p(y)) = (p(c) = p(y))(h—hy) > 0

Therefore swapping y and c also does not increase the cost and since T” is the optimal binary encoding tree the cost doesn’t
decrease either. Therefore the costs are equal. Hence T” is also an optimal tree. Hence T’ is the optimal tree where the
least frequent element and second last frequent element are siblings. [ ]

By the Lemma 5.2.2 and Lemma 5.2.3 we have that the least frequent element and the second least frequent element
are siblings, and they have the maximum height.
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Theorem 5.2.4

Given an instance with symbols 7:

ai, az, e aj, LLP aj, poog an with probabilities
pla), plaz), - pla), - pla), - plan)
such that a;, a; are the least frequent and second least frequent elements respectively. Consider the instance with
n—1symbols I”:
ai, az, ai-1, Qi+1, aj—1, aj+1, s an, z
pla), plaz), - plais), plaws) - plaj-1), plajm), - plan),  pla)+p(a))

Let T’ be the optimal tree for this instance 7’. Then there is an optimal tree for the original instance J obtained
from T’ by replacing the leaf of b by an internal node with children a; and a;.

Proof: We will prove this by contradiction. Suppose T is optimal for 7. Then Cost(T) < CosT(T). In T we know a;
and a; are siblings by Lemma 5.2.3. Now consider 1" for instance 7’ where we merge a;, a; leaves and their parent into a
leaf for symbol z.

Then
Cost(T’) = Cost(T) - p(a;) — p(a;) < CosT(T) — p(a;) — p(a;) = Cost(T’)

This contradicts the fact that T’ is optimal binary encoding tree for 7’. Hence T is optimal. ]

5.2.2 Algorithm

Idea: We are going to build the tree up from the leaf level. We will take two characters x,y, and “merge” them into a
single character, z, which then replaces x and y in the alphabet. The character z will have probability equal to the sum of x
and y’s probabilities. Then we continue recursively building the code on the new alphabet, which has one fewer character.

Since we always need the least frequent element and the second least frequent element we have to use the data
structure called MIN-PRIORITY QUEUE. So the following algorithm uses a MIN-PrIORITY QUEUE Q keyed on the probabil-
ities to identify the two least frequent objects.

Time Complexity: To create the priority queue it takes O(n) time in line 4-5. Then for each iteration of the for loop in
line 6 the EXTRACT-MIN operation takes O(log n) time and then to insert an element it also takes O(log n) time. Hence
each iteration takes O(log n) time. Since the for loop has n — 1 = O(n) many iterations the running time for the algorithm
is O(nlogn).

Remark: We can reduce the running time to O(n loglog n) by replacing the binary min-heap with a van Emde Boas tree.
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Algorithm 14: HUFFMAN-ENCODING(A, P)

Input: Set of n symbols A = {ay,...,a,} and their probabilities P = {py,...,pn}
n

Output: Optimal Binary Encoding b : A — {0, 1}* for A with minimum CosT(b) = }; p(a;) - LEN(b(a;)).
i=1

1 begin

2 n«— |A|

3 Q «— MIN-PRIORITY QUEUE
4 for x € Ado

5 L INSERT(Q, X)

6 fori=1,...n—1do
7 z «— New internal tree node
8 x «— EXTRACT-MIN(Q), y «— EXTRACT-MIN(Q)
9 left[z] «— x, right[z] «—y
10 p(z) «— p(x) +p(y)
11 INSERT(Q, 2)
12 return Last element left in Q as root

Theorem 5.2.5 Correctness of Huffman’s Algorithm

The above Huffman’s algorithm produces an optimal prefix code tree

Proof: We will prove this by induction on n, the number of symbols. For base case n = 1. There is only one tree possible.
For n = k we know that by Lemma 5.2.3 and Lemma 5.2.1 that the two symbols x and y of lowest probabilities are siblings
and they have the maximum height. Huffman’s algorithm replaces these nodes by a character z whose probability is the
sum of their probabilities. Now we have 1 less symbols. So by inductive hypothesis Huffman’s algorithm computes the
optimal binary encoding tree for the k — 1 symbols. Call it T,,_;. Then the algorithm replaces z with a parent node with
children x and y which results in a tree T, whose cost is higher by a fixed amount p(z) = p(x) + p(y). Now since T,,_; is
optimal by Theorem 5.2.4 we have T, is also optimal. [ ]

5.3 Matroids

Definition 5.3.1: Matroid

A matroid M = (E, I') has a ground set E and a collection I of subsets of E called the Independent Sets st

1. Downward Closure: If Y € 7 thenV X C Y, X € 1.

2. Exchange Property: If X,Y € 7, |X| < |Y| then J e € Y — X such that X U {e} also writtenas X +e € 7

. J

An element x € E extends A € T if AU {x} € 7. And A is maximal if no element can extend A.

Lemma 5.3.1

If A, B are maximal independent set, then |A| = |B| i.e. all maximal independent sets are also maximum

Proof: Suppose |A| # |B|. WLOG assume |A| > |B|. Then by the exchange property 3 e € A — B such that BU {e} € J.
But we assumed that B is maximal independent set. Hence contradiction. We have |A| = |B|. [

Base: Maximal Independent sets are called bases.
Rank of S € I max{|X|: X C S, X €I}

Rank of a Matroid: Size of the base.

Span of S € I: {e € E: rank(S) = rank(S+e)}
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5.3.1 Examples of Matroid
e Uniform Matroid: Given E = {ey,...,e,},and k € Z, take 7 = {S C E: |S| < k}

Lemma 5.3.2
M = (E, I') defined as above is a matroid

Proof:

(1) Downward Closure: A€ 7,BCA = |B|<k = BeTl
(2) Exchange Property: A,B€ I, |B| < |A| <k = |B|<k = Ve€A-B, |[BU{e}| <k = BU{e}eTl

Therefore M is a matroid u

i
e Partition Matroid: Given E, {Py,...,P;} such that E = [ | P; and ky, ..., k; € Z, then take

i=1

T={SCE:Vkel[l], |SNP;| <k;}

Lemma 5.3.3
M = (E, I') defined as above is a matroid

Proof:

(» Downward Closure: A€ I,BCA = VY je[l][BNPj|<|ANPj|<k; = Bel
(2) Exchange Property: A,B € I, |B| < |A|] = 3j € [l], |IBNPj| <|ANPj| <k; = ec (ANP)) -
(BNP,), [(BU{e}))NP;|=|BNP|+1<k = BU{e}el

Therefore M is a matroid |

e Laminar Matroid: Given E, ¥ = {L,...,L;} is a laminar family i.e. Vi,j € [I], either L; € Lj or L; 2 L; or
LiNL; =0 and also given ki, ..., k; € Z,. Then take

I ={SCE:Vjell], |SNLj| <k;}

For any L € . we denote k(L) be the given number corresponding to L.

Lemma 5.3.4
M = (E, I') defined as above is a matroid

Proof:

(D Downward Closure: Ac I,BCA = Vjel[l]IBNLj|<|ANLj|<kj = Bel

(2) Exchange Property: Let A, B € T with |B| < |A|. If there exists e € A\B such that e ¢ L for any L € .Z, then

[(B+e)NL|=|BNL| <k(L)forany L € .Z.

Hence assume that for each e € A\B there exists L € .Z with e € L. For each e € A\B, let .Z, be the
collection of L € .Z with e € L. For each e € A\Band any L € .Z\.Z,, we have [(B+e¢) NL| = |[BNL| < k(L).

Hence it remains to show that there exists e € A\B such that [(B+¢e) N L| < k(L) for any L € .Z,. Note
that ., is a chain, as .Z is a laminar. Let £’ = {L,, ..., Le,} be the collection of inclusion-wise maximal sets
in £ such that |[BN L, | < k(Le,) with e; € A\B. Then L., N L,; = 0. Moreover, |A| > |B| and |[AN Le,| < k(Le,)
imply that |[A\(UL,)| > |B\(UL,)|. Hence there 3 ¢; such that [AN L,| > |[BN Le,]|.

Now we take a look at the chain .%,,. For brevity we will use e instead of e;. So in the chain .Z, =
{Li,...,L,} such that we have

L,2L,12---2L, 2L,
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Then take i € [n] to be the largest index such that |[ANL;| < |BN L;|. There will be such index because
otherwise we will have |A| < |B| which is not possible. Then take e* € (AN L;y;) — (L; U B). Such an e* will
exist because [ANLiy| > |ANLiy| = AN(Liy;—L; # 0 and also AN (L1 — L; € BN (Liy; — L;) because
otherwise we will have

[ANLiy| = AN (Lig1 = Lil + |AN Ligg| < BN (Ligs = Li)| + [BNLi| = [BN Ligq|

which is not possible. Hence there exists e* such that e* € (AN L;1) — (L; U B). Therefore take B* = BU {e*}.
Then for all j < i we have B*NL; = BN L; so we don’t have a problem there. Now for all j > i we have
|ANL;| > [BNLj|. Hence now [B*NL;| < [BNLj|+1 < |[ANL;j| < k(L;). Therefore we have B* € 7. Hence
the exchange property follows.

Therefore M is a matroid. [ |

o Graphic Matroid: Given a graph G = (V, E) E is the ground set and take
I ={E' CE: E isacyclic}

Lemma 5.3.5
M = (E, I') defined as above is a matroid

Proof:

(1) Downward Closure: If a set of edges S is acyclic then naturally any subset of edges of S is also acyclic. Hence
downward closure property follows.

(2) Exchange Property: A,B € I, and |B| < |A|. Let Gy,..., Gy are the connected components due to B. For each
component G;, we have |G; N A| < |G; N B| since each component is a tree and B has maximum number of
edges for that component. Then A contains an edge e connecting 2 components G; and G;. Then BU {e} € 1.

Therefore M is a matroid [ ]

e Linear Matroid: Given a m X n matrix M € Z™*" E = [n] and take

I ={S C E: Columns of M corresponding to S are linearly independent}

Lemma 5.3.6
M = (E, I) defined as above is a matroid

Proof:
(D Downward Closure: A € I, B C A. Subset of linearly independent set is also linearly independent. Hence
Bel.

(2) Exchange Property: A,B € I, |B| < |A|. Then take span (A) over Q. Now we know a set of integral vectors
are linearly independent over integers if and only if they are linearly independent over rationals. Hence
|A| = dimg(A) > dimg(B) = |B|. Hence we can extend B by an element e € A — B such that (BU {e}) = |B| +1.
Hence BU {e} € I.

Therefore M is a matroid [ ]

This matroid is also called Metric Matroid.
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5.3.2 Finding Max Weight Base

Max WEIGHT BASE
Input: A matroid M = (E,I) is given as an input as an oracle and a weight function W : E — R.
Question: Find the maximum weight base of the matroid.

We will solve this using greedy algorithm.
Algorithm 15: MAX-WEIGHT-BASE(E, W)

Input: A matroid M = (E,I) is given as an input as an oracle and a weight function W : E — R.
Output: Find the maximum weight base of the matroid

1 begin

2 Assume w(1) > --- > w(n)
3 S0

4 I {S}

5 fori=1tondo

6 if S+i €1then

7 L | Se—S+i

8 return S

Theorem 5.3.7

The above algorithm outputs a maximum weight base

Proof: Let M be a matroid. We will prove that this greedy algorithm works by inducting on i. At any iteration i we
need to prove the following claim:

Claim 5.3.1
At any iteration i there is a max weight base B; such that S; C B; and B; \ S; C {i+1,...,n}.

Proof: Base case: S = (. So for base case the statement is true trivially. Assume that the statement is true
up to (i — 1) iterations.
Now S;_; C B;_; where B;_; is a maximum weight base and B;_; — S;_1 C {i,...,n}. Now three cases
arise:
Case 1: Ifi € B;_; then S;_1 +i C B;_;. Therefore, S;_; +i is independent. Sonow B; = B;_y and S; = S;_1 +i
and B; - S; C{i+1,...,n}.
Case2: Ifi¢B;_jand S;_1+i¢ 7. ThenS; =S;_1and B; =B;_1. AndB; - S; C {i+1,...,n}.
Case 3: Ifi ¢ B;_; butS;_1+i € 7. Then S; = S;_; +i. Now S; can be extended to a B’ by adding all but one
element of B;_1. So |B’| = |B;—1]|. Let the element which is not added is j € B;_1. So B’ = B;_1 +i—j.

wt(B') = wt(B;_1) — wt(j) + wt(i)

But we have wt(i) > wt(j). So wt(B’) > wt(B;-1). Now since B;_; has maximum weight we have
wt(B") = wt(B;_1). Thenour B; =B’.SoB; —S; C {i+1,...,n}.

Hence, the claim is true for the ith stage as well. Therefore, the claim is true. ]
Let the final set after n iterations be the set T = {t1,...,;}. Now we will prove that T is a maximum weight independent
set.
Claim 5.3.2
Atany iteration, T; = {t1, ..., i }, then T; is a maximum weight independent set with at most i elements

Proof: We will prove by induction. Base Case: i = 0. Then T; = 0. So the statement follows naturally.
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Assume T;_; is maximum weight independent set with at most i — 1 elements. Now for a contradiction, say
T; € T of size at most i with strictly larger weight than 7;. Then 3 x € T; — T,_; such that T;_; U {x} € 7. Then
we have

wt(T; = x) < wt(Ti-1)

by inductive hypothesis. The only element that extend T;_; are those which comes after ¢;. Therefore, wt(x) <
wt(t;). Hence, we have

wt(Ty = x) + wt(x) < wit(Ti—q) + wi(t)) = wi(T}) < wi(T})

But we assumed that wt(T;) > wt(T;). Hence, contradiction # [

Therefore using the claims, after the algorithm finished we have no elements left to check, so the current set has
the maximum weight which is also an independent set. So the algorithm successfully returns a maximum weight base. ®

5.3.3 Job Selection with Penalties

FIND FEASIBLE SCHEDULE

Input: Set J of n jobs with deadlines d, . . ., d, and rewards wy, ..., wy

Question: Fach jobs unit time and we have a single machine to process their jobs. Give a feasible schedule of jobs
with maximum reward

First let’s define what is a schedule and what is even a feasible schedule:

Definition 5.3.2: Feasible Schedule

For a subset S of jobs:

(D A schedule is an ordering of S
(2) A feasible schedule is one where one job in S gets finished by deadline.
(3) AsetS C ] is feasible if S has a feasible schedule.

Now for any S C J, and t € Z,, define N;(S) = {j € S: d; < t}. Then we have the following lemma:

Lemma 5.3.8
Let S C J. The following are equivalent:

(@ S is feasible
@ Vte Zo, |Nt(S)| <t
(3 A schedule that orders jobs in S by deadline is feasible

Proof:
3 = 1: This follows naturally

1 = 2: Suppose not. Then 3 t such that |[N;(S)| > t. Then by time ¢, greater than ¢ many jobs have to be
completed. But S is feasible, so every job is finished by deadlines and each job takes unit take. Hence by time ¢, more than
t jobs can not be finished. Hence, contradiction.

2 = 3: The schedule orders the jobs by deadline. We will use induction on ¢. For t = 1 we have |N;(S)| < 1.
Hence, by t = 1 at most one job is completed. At t = 1 the jobs are completed within deadline. Suppose till time t — 1 the
jobs are completed within deadlines. At time ¢ we have |N;(S)| < t. Therefore, all the jobs with deadlines < ¢ in S. So all
the jobs in N;(S) can be completed within time ¢ in any order. Therefore, if we complete the jobs with deadline < ¢ first,
and then we can complete all the jobs with deadline ¢ within time ¢. Hence, at time ¢ all the jobs are completed within
their deadlines. Hence, by mathematical induction at time ¢ = n all the jobs are completed within deadline. Therefore, the
schedule orders jobs by deadline then it is a feasible schedule.



5.3 MATROIDS Page 32

Lemma 5.3.9

Consider M = (J, ') where S is feasible = S € 7. Then M is a matroid. (Assume that no two jobs have same
deadline)

Proof: Suppose D := the maximum of all deadlines. Consider the set
Z ={N(J): t € [D]}

Hence .Z is a laminar family. Then take 7/ = {S C J: [N;(S)| < t Vt € [D]}. By Lemma 5.3.4 M = (J,Z’) is a laminar
matroid. And by Lemma 5.3.8 7’ is the set of feasible schedules. Therefore 7’ = 7. Hence M is a matroid. ]
Alternate Proof :

(D) Downward Closure: If S € I then S is feasible. Then for any subset T of S all the jobs are completed within deadlines
since S is feasible. So T € 7.

(2 Exchanges Property: Given S,T € I and |T| < |S|. Now order S and T by deadlines. Let j be the job with largest
deadline thatisnotin T i.e. j = m;l\);di. Then we claim that TU {j} € 7.
i€

Now define
T<={i€T:di<dj} T>={i€TIdi>dj}

And also similarly define
S<:{i€SIdi<dJ’} S>:{i€53di>dj}

As we defined j we have T~ = S”. Since we have |S| > |T| we have |S<| > |T<|.

Now if T U {j} is not feasible then 3 ¢ such that |[N,(T U {j})| > t. Since T is feasible we have |[N;(T)| < t.
Hence t > d; otherwise N;(T U {j}) = N;(T). But then

INTU{DI =TS +1+{ieTU{j}:dj <di <t} <|SS|+1+[{ieSU{j}:dj <di <t} =|N(S)| <t

Therefore we obtain |[N;(T U {j})| < t. Hence contradiction. Therefore T U {j} is feasible.
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Dijkstra Algorithm with Data

Structures

MiNniMuM WEIGHT PATH
Input: Directed Graph G = (V,E), s € V is source and W = {w, € Z,: e € E}
Question: Vo €V — {s} find minimum weight path s ~ v.

This is the problem we will discuss in this chapter. In this chapter we will often use the term ‘shortest distance’ to
denote the minimum weight path distance. One of the most famous algorithm for finding out minimum weight paths to
all vertices from a given source vertex is Dijkstra’s Algorithm

6.1 Dijkstra Algorithm

We will assume that the graph is given as adjacency list. Dijkstra Algorithm is basically dynamic programming. Suppose
&(v) is the shortest path distance from s ~» v. Then we have the following relation:

6(v) = u:(I;I:iI)leE{é(u) +e(u,0)}

And suppose for any vertex v € V — {s}, dist(v) be the distance from s estimated by the algorithm at any point. This is why
Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been
determined. The algorithm repeatedly selects the vertex u € V — S with minimum shortest-path estimate and estimates
the distances of neighbors of u. So here is the algorithm:

Algorithm 16: DyksTRA(G, s, W)
Input: Adjacency Matrix of digraph G = (V, E), source vertex s € V and weight function W = {w, € Z,: e € E}
Output: V v € V — {s} minimum weight path from s ~» v
1 begin
S—0,U—V
dist(s) «— 0,Y o € V —{s}, dist(v) «— oo
while U # 0 do
U — Lrél{]l dist(u) and remove u from U

S «— Su{u}
7 for e = (u,0) € Edo
8 L dist(v) «— min{dist(v), dist(u) + w(u,0)}

G W N

=)}

Here below we give an example of how the Dijkstra algorithm works:
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Figure 6.1: The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The shortest-path estimates appear
within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set S and at any iteration of
while loop the shaded vertex has the minimum value. At any iteration the red edges are the edges considered in minimum
weight path from s using only vertices in S.

Suppose at any iteration ¢, let dist;(v) denotes the distance v from s calculated by algorithm for any v € V and $®*)
denote the content of S at ' iteration. In order to show that the algorithm correctly computes the distances we prove
the following lemma:

Theorem 6.1.1
For each v € ), §(v) = dist,(v) for any iteration ¢.

Proof:  We will prove this induction. Base case is |[S(!)| = 1. S grows in size. Then only time |S®)| = 1 is when S = {s}
and d(s) = 0 = 5(s). Hence, for base case this is correct.

Suppose this is also true for ¢ — 1. Let at " iteration the vertex u € V — $(*~V is picked. By induction hypothesis
for allo € ) — {u}, dist,(v) = dist;_1(v) = 6(v). So we have to show that dist;(u) = 5(u).

Suppose for contradiction the shortest path from s ~» u is P and has total weight = §(u) = w(P) < dist;(u). Now
P starts with vertices from $(*) by eventually leaves S. Let (x, y) be the first edge in P which leaves Si.e. x € Sbuty ¢ S.
By inductive hypothesis dist;(x) = 6(x). Let P, denote the path s ~» y following P. Since y appears before u we have

w(Py) =5(y) < 6(u) =w(P)

Now
dist;(y) < dist;(x) + w(x,y)

since y is adjacent to x. Therefore

dist;(y) < dist;(x) +w(x,y) = (y) < dist;(y) = dist;(y) = (y)
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Now since both u,y ¢ S) and the algorithm picked up u we have §(u) < dist,(u) < dist,;(y) = 5(y). But we can not have
both 6(y) < 8(u) and 6(u) < &(y). Hence contradiction # Therefore §(u) = dist;(u). Hence by mathematical induction
for any iteration ¢, for all v € S, §(v) = dist,(v). [

Therefore, by the theorem after all iterations S has all the vertices with their shortest distances from s and henceforth
the algorithm runs correctly.

Now in the algorithm there are two things which we needed to keep track of. At every iteration of the while loop
we needed to find the vertex u which had the minimum distance from the source vertex, and we needed to update the
distance of a vertex by decreasing the value as needed. So after the decrease we need to update the minimum distance
vertex. So in any data structure used to do these two operations we need the following things:

e Need to store: Vv € V, dist(v)
e Operations:

— ExTRACT-MIN: Gives the vertex with minimum distance in v and remove from the data structure.

— DEecrease-KEY: For vertex v reduce dist(v) to k.

In the algorithm we called EXTRACT-MIN n times and DECREASE-KEY m times.

6.2 Data Structure 1: Linear Array

So naively we can use a linear array of size n where each element of the array corresponds to a vertex. Each element of the
array is a tuple of flag of being in U and the value dist(v). To EXTRACT-MIN it takes O(n) time since we need to compare
all the elements and for DECRESE-KEY it takes O(1) time. Therefore Dijkstra takes n - O(n) + O(m) = O(n?) time.

6.3 Data Structure 2: Min Heap

A binary heap data structure is an array object that we can view as “Almost complete binary” tree (ACB tree). Each node
of the tree corresponds to an element of the array. The tree is completely filled on all levels except possibly the lowest
which is filled from the left up to a point.

Let the ACB tree has height h. Then heap is completely field until height h — 1 i.e. every vertex up to level h — 2
has exactly two children and a node at height 4 — 1 if missing a child then:

« Either both children are missing or only right child are missing.
« Every vertex to the right of the node is missing both children.

An ACB tree height h is represented as an array of size 2" — 1. For vertex v stored at A[i], the left child of A is at A[2i]
and the right child is at A[2i + 1] and the parent of A is at A [L%J ]

Y ——— ~
16(14|10| 8 | 719|324 |1
S

Figure 6.2: A max-heap viewed as an ACB tree (left) and as an array (right)

Here we will study min-heap where the value of the children is more than the value of its parent.
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6.3.1 Extracting the Minimum

For minimum, we already know the root of the heap or the first element of A is the minimum. But after extracting the
minimum we need to balance the heap so that it gets the properties of min-heap back. For that we replace the root with
the right most element in the array A. Then balance the heap by moving it down if one of the child has key smaller than
node.key and keep doing it until both child is larger.

Algorithm 17: EXTRACT-MIN(A)

t «— A.size, Minval «— A[1].key
A[1] «— A[t]
te—t—1,i—1
while True do
if 2i < t then
L left —val «— A[2i].key

else
| return minoval // No left child i.e. already at leaf

9 if 2i+1 < t then
10 L right —val «— A[2i+ 1].key

QA 1A W N =

e 3

11 else

12 | right —oal «— oo // No right child
13 if left —val < right —val and Ali] .key < left —val then
14 curr_elm «— A[i]

15 Ali] «— A[2i]

16 U[2i] «— curr_elm

17 | ie—2i

18 else if right —val < left —val then

19 curr_elm «— A[i]

20 Ali] «— A[2i+1]

21 Ul2i+1] «— curr_elm

22 | ie—2i+1

23 else

24 L Break

25 return minval

In this algorithm for extracting min each time the height of the new root node increases by one at each iteration
of the while loop. Hence, this takes at most O(logn) time.

6.3.2 Decreasing Key of a Node

After decreasing the key of a node it may have smaller key than it’s parent node. So move it upward i.e. replace with
its parent node, and we keep doing it until the parent node has smaller value than it. Here again at each iteration of the

Algorithm 18: DECREASE-KEY(A, i, k)

1t «— A.size

2 Ali] — k

3 while i > 1 and A[i] key < A [[%J] key do
4 curr_elm «— Al[i]

s | Alilkey — A[[1]]

6 A [L%J] «—— curr_elm

7 i3]
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while loop the height decreases by 1. Hence, this takes at most O(log n) time.

6.3.3 Time Complexity Analysis of Dijkstra

Both EXTRACT-MIN and DECREASE-KEY takes O(log n) time for a min-heap. Now in a Dijkstra algorithm there are n calls

for ExTRACT-MIN and m calls for DECREASE-KEY. Therefore, the total time taken by Dijkstra is O(nlogn) + O(mlogn) =
2

O(mlogn). But this is better when m = o (10”g ) Now we will show an improvement of min-heap where the amortized

cost of ExTRACT-MIN is O(logn) and amortized cost of DECREASE-KEY is constant. But first we will take a detour of
explaining amortized analysis.

6.4 Amortized Analysis

In amortized analysis, we average the time required to perform a sequence of data-structure operations over all the op-
erations performed. With amortized analysis, we can show that the average cost of an operation is small, if we average
over a sequence of operations, even though a single operation within the sequence might be expensive.

Amortized analysis in not average-case analysis as amortized analysis guarantees the average performance of each
operation in the worst case

Consider the following algorithm: Now the number of bit flips in this process is 1,2,1,3,...,n,.... At any point

Algorithm 19: Amortized Analysis
Input: n

1 begin

t «— 0,X(0) «— 0"

while True do

(5 I

te—t+1
X(t) — X(t—-1)+1

the number of bit flips can be at most n. In the worst case an operation has cost n. We want to compute the average cost
for an operation. We will show that starting from X (0) = 0" the average cost is at most 2. Furthermore, we will show 3
different proofs of this.

Lemma 6.4.1

The total cost of bit flips for ¢ operations is at most 2¢.

Proof 1 (Counting): Int operations:

n'h bit gets flipped: ¢ times
(n— 1) bit gets flipped: | £] times (when n'" bit is 1)
(n—2)"" bit gets flipped: | ] times (when (n — 1) bit is 1)

Therefore the total number of bit flips we getis < ¢ (1+ % + ‘—11 +-.-) <2t [

Now we will give a proof using the accounting method. In the accounting method of amortized analysis, we assign
each operation an amortized cost that may differ from its actual cost. If the amortized cost is higher, the excess is stored as
credit on data structure objects; if lower, credit is used to cover the gap. This way, expensive operations can be balanced
by cheaper ones, and different operations may have different amortized costs.

Proof 2 (Charging): Suppose every operation costs 2 Rs.

« Every change from 0 — 1 charges 1 Rs and store 1 Rs.
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« Every change from 1 — 0 charges 2 Rs.

Now as you can see to change from 1 — 0 that bit was previously changed from 0 — 1. So to change from 1 — 0 we can
use the stored 1 Rs. Hence, in average every operation costs exactly 2 Rs. Since there are t operations total number of bit
flips is at most 2t. [ ]

In the next proof we will analyze by computing a necessary potential function. After each operation we can
calculate the potential difference.
Proof 3 (Potential):  Consider the potential function ®(i) = #1’s in X(i). Let at i*" operation t; bits were flipped from
1 — 0. Now any operation flips at most 1 bit from 0 — 1. Therefore, number of bit flips in i*" operation is at most #; + 1.
Therefore, we have

() < D(i-1)—ti+1

since the number of 1’s in ®(i) is decreased by t; many 1 — 0 flips and then increased because of 1 flip from 0 — 1.
Therefore, the cost at i*" operation is t; + 1 < ®(i — 1) — ®(i) + 2. Hence, the total number of bit flips in ¢ operations is
D(0) — d(t) + 2t < 2. ]

Hence, after t operations the total number of bit flips is at most 2¢. Therefore, on average the cost per operation
is at most 2. Hence, the amortized cost of the operation is 2. So we will use such amortized analysis on the next data
structure to optimize the run time of Dijkstra Algorithm.

6.5 Data Structure 3: Fibonacci Heap

Instead of keeping just one Heap we will now keep an array of Heaps. We will also discard the idea of binary trees. We
will now use a data structure which will take the benefit of the faster time of both the data structure i.e.

EXTRACT-MIN | DECREASE-KEY

Linear Array O(n)
Min-Heap O(logn) O(logn)
Fibonacci Heap O(logn)* o(1)*

Remark: The * is because of the amortized time.

Since Fibonacci heap is an array of heaps there is a rootlist which is the list of all the roots of all the heaps in the Fibonacci
heap. There is a min-pointer which points to the root with the minimum key. For each node in the Fibonacci heap we have
a pointer to its parent and we keep 3 variables. The 3 variables are degree, size and lost where lost is a Boolean Variable.
« For any node x in the Fibonacci heap the x.degree is the number of children x has.
« x.size is the number of nodes in the tree rooted at x.

« x.lostis 1if and only if x has lost a child before.

Why any node will lose a child that explanation we will give later. With this set up let’s dive into the data structure.

6.5.1 Inserting Node

To insert a node we call the F1B-INSERT function and in the function the algorithm initiates the node with setting up all
the pointers and variables then add the node to the rootlist.
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Figure 6.3: A Fibonacci Heap with 5 heaps in the rootlist

Algorithm 20: F1B-CREATE-NODE (v)

1 x.degree «— 0

2 x.parent «<— None
3 x.child «— None
4 x.lost «— 0

5 x.key «— v

6 return x

Algorithm 21: FIB-INSERT(F, v)

1 x «— F1B-CREATE-NODE(0)
if F. min == None then

2
3
4

® N o«

F.rootlist «— [x]
F.min «— x

else

F.rootlist.append(x)
if x.key < F.min .key then
L F.min «— x

All of this can be done in O(1) time. Therefore, to insert a node in the Fibonacci heap it takes O(1) time.

6.5.2 Union of Fibonacci Heaps

To unite two Fibonacci heaps F; and F; we simply concatenate the root lists of F; and F; and then determine the new
minimum node. All the operations here can be done in constant time. Hence, FIB-UN1ON takes O(1) time.

Algorithm 22: F1B-Un1ON(Fy, F,)

F «— MaAKkEe-FiB-HEAP
F.min «— F;.min
F.rootlist «— F;.rootlist + +F,.rootlist
if F,.min < F;.min then
L F.min «— F,. min

G W N =

¢ return F

6.5.3 Extracting the Minimum Node

The F1B-EXTRACT-MIN function extracts the minimum node from the Fibonacci heap F and then rearranges the heap array.
It works by first making a root node out of each of the minimum node’s children and removing the minimum node from

the rootlist. It then consolidates the root list by linking roots of equal degree until at most one root remains of each degree.
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Algorithm 23: FIB-EXTRACT-MIN(F) Algorithm 25: CONSOLIDATE(F)
1 z «— F.min 1 Initialize array A[O, ..., D(n)] with None elements.
2 if z # None then 2 for x € F.rootlist do
3 for x € z.child do 3 d «— x.degree
4 F.rootlist.append(x) 4 if A[d] == None then
5 x.parent «— None 5 L Ald] «— x
6 Remove z from F.rootlist 6 while A[d] # None do
if z == zright then 7 y «— Ald]
8 L F.min «— None 8 if y.key < x.key then
0 else 9 L Exchange x with y
10 L F.min «— z.right consolidate(F) 10 F1B-HEAP-LINK(F, y, x)
- 11 Ald] «— None,d «— d+1
11 return z
12 | Ald] «—x

Algorithm 24: FiB-Heap-LINK(H, y, x)

1 Remove y from F.rootlist
2 y.parent «— x
3 y.lost «— 0

F.min «— None
fori=0toDdo
if A[i] # None then
if F. min == None then
L F.rootlist «— [A[i]], F. min «— A[i]

else
F.rootlist.append(Ali])
if A[i].key < F.min key then
L F.min «— A[i]

Here D(n) denotes the maximum degree a node can have after CONSOLIDATE. The procedure CONSOLIDATE uses an aux-
iliary array of size A of size D(n) which we will choose later. For each i < D(n) it keeps a heap of degree i. And if it
finds two heaps of same degree then it makes the one with higher key to be the child of the other one. The function

0123 0123

Al AL

w,X

200009 @ 2000090

Figure 6.4: A run of CONSOLIDATE

F1B-HEeAP-LINK does this process of linking two heaps of same degree.
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Of course in order to allocate array we have to know how to calculate the upper bound for D(n) on the maximum
degree. We will show an upper bound of O(log n) in subsection 6.5.5.

Now in F1B-EXTRACT-MIN in each iteration of the outer for loop or inner while loop it operates on one heap in
F.rootlist. Hence it takes O(D(n) + #heaps in F.rootlist) time.

6.5.4 Decreasing Key of a Node

In this section we will show how to decrease a key of a node in a Fibonacci heap in O(1) amortized time. The Fi-
DEcrREASE-KEY function decreases the key value of the target node then if the min-heap order the node is in is violated
then we use the CAscapING-CuUT function to restore the min-heap property again. These two functions operates like the
following:

Algorithm 27: Cascaping-Cut(F, y)

Algorithm 26: F1B-DecreASE-KEY(F, x, k) 1 if y.parent # None then
2 if ylost == 0 then

3 L y.lost «— 1

1 if k > x.key then
2 L return Error

4 else
3 xkey —k 5 Curt(F,y,y.parent)
AN x.parent 6 L CascapING-CUT(F, y.parent)
5 if y # None and x key < y.key then
6 Cut(F,x,y)
7 L CascADpING-CUT(F, y) Algorithm 28: Cut(F, x, 1)
8 if k < F.min key then 1 Remove x from y.child
9 L F.min «— x 2 y.degree «— y.degree — 1

3 F.rootlist.append(x)
4 x.parent «<— None, x.lost «— 0

After decreasing the key of the target node if the min-heap order has been violated then we start by cutting the link
between x and its parent and adding it to the rootlist. Let x is a node in F. At some time x was a root. Then x was linked

Figure 6.5: A run of CASCADING-CUT. First FIB-DECREASE-KEY(F, 46, 15) and then F1B-DECREASE-KEY(F, 35, 5) are called.

to another node. Suppose at some time two children of x were removed by cuts. As soon as second child has been lost
we cut x from its parent and make it a new root. But we are not done yet. Since x might be the second child cut from its
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parent. So we have to check for its parent. Therefore, we recursively run CAscaDING-CUT on its parent till we reach the
root or cut the first child from a node.

Notice at each run of CAascADING-CUT the lost bit of a node is getting reset. Therefore, the total time taken by
FiB-DECREASE-KEY is O(1 + #lost bits reset).

6.5.5 Bounding the Maximum Degree
To prove that the amortized time of F1B-ExTRACT-MIN and F1B-DECREASE-KEY are O(log n) and O(1) we must show that
upper bound of the maximum degree of any node after ConsoLIDATE function is O(log n). In particular, we will show its

log,, nJ where ¢ is the golden ratio.

Lemma 6.5.1

Let x be any node in a Fibonacci heap, and suppose that x.degree = k. Let y1, . . ., yi denote the children of x in the
order in which they were linked to x from the earliest to the latest. Then y;.degree > 0 and y;.degree > i — 2 for
i=2,...,k

Proof: Obviously y;.degree > 0. The only function that adds a child to a node is the function CONSOLIDATE. Now for
i > 2, y; was linked to x when all of yy,...,y;—; were children of x, and therefore we must have had x.degree > i — 1.
Because node y; is linked to x only if xdegree = y;.degree we must also have y;.degree > i — 1. Since then node y; has lost
at most one child, since it would have been cut from x by Cascaping-Cur if it had lost two children. We conclude that
y;.degree > i — 2. [

Lemma 6.5.2

Let x be a node in a Fibonacci heap and let k = x.degree. Then

size(x) > Fyp > ¢k

Proof: We will prove this using induction. For k = 0, F, = 1 so this is obviously true. For k = 1 there is one child of x.
Hence, size(x) = 2 = F;. Suppose this is true for 1,...,k — 1. Let y1, . . ., yx are the children of x in the order in which they
were linked to x. By the above lemma we have y,.degree > 0 and y;.degree > i —2 for alli = 2,..., k. Hence, by Induction
hypothesis we have size(y;) > F;_, for all i = 2, ..., k. Therefore,

k k k
size(x) > 1+ Z size(yg) = 2 +ZF,~ =1 +ZF,~ = Fryp > ¢F
i=1 i=2 i=1

Hence, we have the lemma. ]

Corollary 6.1
The maximum degree of any node in CoNSOLIDATE, D(n) = O(log n).

6.5.6 Time Complexity Analysis of Dijkstra

Now we will calculate the amortized time of Dijkstra algorithm. Before that we will calculate the amortized cost of
the data structure. Let in an algorithm FiB-EXTRACT-MIN was called ¢ times. Therefore, total cost of all + many Fi-
ExXTRACT-MIN calls is O(t log n + total #heaps created). Now heaps are created because of F1B-EXTRACT-MIN functions
and F1B-DECREASE-KEY function. We know FIB-EXTRACT-MIN were called ¢ times and each time it created O(log n) heaps.
Hence, in total FIB-EXTRACT-MIN created O(t log n) heaps. Therefore, time taken by the + many F1B-EXTRACT-MIN calls
is O(t log n + #F1B-DECREASE-KEY calls).

Now suppose in that algorithm the function F1B-DECREASE-KEY were called k times. Hence, this takes O(k +
#total number of LOST bits reset) = O(k + #total number of LOST bits set) time. Now the lost bits are set only by the
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FiB-DECREASE-KEY. Therefore, #total number of LoOST bits rset = #F1B-DECRESE-KEY was called. Therefore, the total time
taken by all the F1B-DEcRESE-KEY calls is O(k).

Hence, in an algorithm if ¢ times FIB-EXTRACT-MIN was called and k times FIB-DECRESE-KEY was called then total
time taken by FIB-EXTRACT-MIN is O(t log n + k) and total time taken by F1B-DECRESE-KEY is O(k). Therefore, amortized
time taken by FiB-EXTRACT-MIN is O(% log n) and by FIB-DECRESE-KEY is O(1).

Now in the Dijkstra algorithm FIB-EXTRACT-MIN is called n times and F1B-DECRESE-KEY is called O(m) times where
n is the number of vertices in the graph and m is the number of edges in the graph. Hence, the amortized cost of Fis-
ExTrRACT-MIN is O(logn) and FiB-DECREASE-KEY is O(1). Therefore, using Fibonacci heap Dijkstra takes (nlogn + m)
time.



CHAPTER 7 -

Kruskal’s Algorithm with Data

Structures

MINIMUM SPANNING TREE

Input: Weighted undirected graph G = (V, E) and weights of edges W = {w, € Z,: e € E}.
Question: Find a spanning tree T C E such that )] w, is minimum.
eeT

In this chapter we will discuss this problem. We will first discuss the Kruskal’s algorithm which gives a greedy
solution to the problem. Then we will discuss the data structure that we can use to implement the Kruskal’s algorithm
efficiently. We assume the graph is connected otherwise the algorithm can use a DFS to check connectivity.

7.1 Kruskal’s Algorithm

Kruskal
Algorithm

5>

\2/

The Kruskal’s algorithm uses a concept of component to find the minimum spanning tree.

Definition 7.1.1: Component

In a graph G = (V, E), a component is a maximal subgraph G’ = (V’, E’) of G such that

(1) (V',E’) is connected.

(2) Yo ¢ V', there is no edge e € E such that e connects v to any vertex in V”.
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In Kruskal’s algorithm we maintain a set of components each of them is a tree so basically we maintain a forest.
And we find a safe edge which is always the least weight edge in the graph that connects two distinct components and
adds that edge to the collection of edges in the forest and update the components.

So the algorithm first sorts the edges in non-decreasing order of their weights. Then it initializes a forest F with
all the vertices in the graph and no edges. Then it iterates through the sorted edges and checks if the edge connects
two distinct components. If it does, then it adds the edge to the forest and merges the two components. The algorithm
stops when we have n — 1 edges in the forest. We have shown in Lemma 5.3.5 that the set of collection of acyclic sets in

Algorithm 29: KRUSKAL’S ALGORITHM
Input: G = (V,E), and weights of edges W = {w, € Z,: e € E}
Output: A minimum spanning tree T C E of G
1 begin
T—0
Sort the edges in E in non-decreasing order of their weights so that w(e;) < w(ez) < --- < w(en)
fori=1,...,mdo
Let e; = (u,0)
if T U {e;} is acyclic then
| Te—Tu{e}

8 if |[T| =|V| -1 then
L return T

N G R W N

any graph is a matroid. Hence, here we are basically finding a base of the graphic matroid with minimum weight. The
algorithm is exactly similar to the greedy algorithm for finding max-weight base of a matroid in subsection 5.3.2. So you
can use the similar arguments to show that the algorithm is correct and returns the minimum spanning tree of the graph.
Now in the algorithm the checking of T U {e; } is acyclic can be done by checking if both the end points are in same
component or not. And if they are not then we need to combine those to components. But there comes a question:

What it means to give a component?

We will use some vertex to represent the component. We keep a pointer v.parent for each vertex which points to
representative of component v is in. Hence, we need a data structure that can do the following two operations efficiently:

e FiND(u): Returns the component u is in.

e UnIoN(u,0): Merges the components of u and v into a single component.

So we can use the updated algorithm to implement the Kruskal’s algorithm using proper data structure: The Kruskal’s

Algorithm 30: KRUSKAL’S ALGORITHM
Input: G = (V,E), and weights of edges W = {w, € Z,: e € E}
Output: A minimum spanning tree T C E of G
1 begin
T——0
Sort the edges in E in non-decreasing order of their weights so that w(e;) < w(ez) < -+ < w(ep)
fori=1,...,mdo
Let e; = (u,0)
if FinD(u) # FIND(v) then
L T « T U {e;}

UNION(u, 0)

[--JREN - W) BN N M

o

if |T| = |V| -1 then
10 L return T
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Algorithm calls m times the FIND operation and n times the UNION operation.

7.2 Data Structure 1: Linear Array

We create an n length array A which hold the parent pointer of each vertex. Initially for all vertices A[v] = v. So
ARRAY-FIND(u) will just return A[u]. Hence, FIND takes O(1) time. For UNION(u,v) we use the following: Therefore,

Algorithm 31: ARRAY-UNION(u, v)

1 if Alu] # A[v] then

2 fori=1,...,ndo

3 if A[i] == A[v] then
4 L L Ali] «— Alu]

ARRAY-UNION(u,v) takes O(n) time. Hence, the time complexity of the Kruskal’s algorithm using this data structure is
m-0(1) +n-0(n) = O(m+n?) = 0(n?).

7.3 Data Structure 2: Left Child Right Siblings Tree

Using an array is not efficient enough. One place we can optimize is if given the components is there a faster way to get
the vertices in the component? We can use the following tricks to optimize:

1. For every representative of a component, store pointers to all vertices in that component.

2. Change representative for the smaller component while doing UNION(u, v).

7.3.1 Construction

So now every representative of a component we point to one vertex which is also in the component. And from that vertex
we can iterate through all the vertices in that component. So basically we can imagine a 2 level tree where all the children
point towards the root which is the representative of the component. The root points to one of the children take the left
most child. And then all the other children points to the immediate right child of the root.

Initially we had: 8 8 8 g

WW/ j \Q
O O O

Want

Now we will do: 8 g 9

[ ZIN |

Figure 7.1: Left Child Right Sibling

We can also store a variable to store the number of vertices in the component so that we can use it to compare the size of
two components and then update for the smaller one. Therefore, the data structure now stores:

« v.parent for each v which points to the vertex representing the component v is in.
« v.size for size of the component for each component representative v.
« v.left for the left most child for each component representative v.

« o.right for the immediate right sibling of v for all vertices in a component which are not representatives of the
components.

This data structure is called Left Child Right Sibling. So in this data structure the LCRS-FIND(u) just returns the value of
u.parent. Hence, LCRS-FIND takes O(1) time.
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7.3.2 LCRS-UNI1ON Function

For the LCRS-UNION function we do the following

Algorithm 32: LCRS-Un1ON(1, 0)

1 up «<— u.parent
2 vp «— v.parent
3 if up # vp then

4 if up == u then

5 u.parent «— vp

6 u.right «— op.left

7 op.left — u

8 up.size «— vp.size+1

9 else if up.size < vp.size then

10 up.right «— u

11 X — up

12 while x.right == None do

13 L x.parent «— vp, x «— x.right
14 x.right «— vp.left, vp.left «— up.left
15 op.left «— up

16 up.size «— vp.size + up.size
17 else

18 op.right «— v

19 X —op
20 while x.right == None do

21 L x.parent «— up, x «— x.right
22 x.right «— up.left, up.left «— vp.left
23 up.left — vp
24 up.size «<— up.size+ vp.size

Below we have shown how the LCRS-Un1oN function works. This way we can unite two components and update the

(a) “Pﬁ 04 op (b) %K (© parert /K
(i)/ ‘\o (% LP\Q (f%\
up nehouo ikt 0 up u 0 © u 0

Figure 7.2: A run of LCRS-UNION(u, )

corresponding component representative in the vertices of the smaller component. In the next section we will analyze

the amortized time complexity of the LCRS-UNIoON function
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7.3.3 Amortized analysis of LCRS-UN1ON

Lemma 7.3.1

For any vertex v € V, v.parent can change at most O(log n) times.

Proof: Initially size of v’s component is 1. Each time v.parent is changed the size of the component v is in becomes at
least double. Therefore, at most O(log n) times v.parent can change. ]

Now since there are n vertices at most O(nlogn) times change of parent for any vertex happens. Now change
of parent for any vertex happens only in LCRS-Un1oN function. Total time taken by all the LCRS-UNION operations is
O(nlogn) time. Since LCRS-UNION was called n times the amortized cost of LCRS-Un1on is O(log n).

7.3.4 Time Complexity Analysis of Kruskal

We have shown above that LCRS-FIND takes O(1) time and amortized cost of LCRS-Un1oN is O(log n). Since LCRS-FIND
is called m times and LCRS-UNION is called n times the total run time of Kruskal’s Algorithm using the Left Child Right
Sibling data structure is O(m + nlogn).

7.4 Data Structure 3: Union Find

We will now give up on the idea of height 1 trees to optimize more. Representative of a component is still vertex at root,
but we will do the following: changes:

« UNION just changes parent pointers of root nodes, but it takes O(1).

« Instead of size, we will maintain a variable rank of a component roughly which can be thought of as height of the
component.

« For UNION root of smaller rank will be changed to point to root of the component of larger rank.
« The FIND operation does something called path compression which we will explain later.

To implement this data structure we will use a tree for each component and every node has a parent pointer. And there
we will use the FIND and UNION operations.

Our goal is to run Kruskal’s algorithm in almost O(n + m) time. More precisely O((n + m) log" n) time where log” n
is the number of times we need to compose log on n to get 1.

7.4.1 FIND Operation

The FIND operation does something called path compression i.e. for any vertex v € V, if FIND(v) is called then it starts
from v changes it’s parent to the root of the component v is in, and then it moves to its parent and changes his parent to
be the root and move to his parent and keep on doing like that till it reaches the root. In other words in path from the
root to v, for every vertex in that path the FIND operation changes the parent pointer to the root.

(@) (o)
FIND(v9)
@) (o) "9 - ®) OBRO

:@ g o & ®

Figure 7.3: Path compression during FIND(vy) operation
Here is the pseudocode of the FIND operation below: We will not discuss the amortized cost of this operation. Instead, we
will do it in subsection 7.4.3.
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Algorithm 33: FIND(v)

1 if v.parent # v then
2 L v.parent «— FIND(v.parent)

3 return v.parent

7.4.2 UNION Operation

For the Un1ON operation we change the root of smaller rank to point to the root of the component of larger rank. So for the
Un1ON(u, v) operation we assume that u, v are the roots of their respective components. Since in UNION(u, v) we assume

Algorithm 34: Un1oN(u,0)

1 if u.rank > v.rank then
2 L v.parent «— 0

3 else if v.rank > u.rank then
L u.parent «— v

'S

else
v.parent «— u
u.rank «— vu.rank+1

a o

u,v are component representatives before using UN10N(u, v) we use FIND on u and v to get the roots of their components,
and then we apply UNION on the roots. Hence, UN1ON(u, v) takes O(1) time.

7.4.3 Analyzing the Union-Find Data-Structure

We call a node in the union-find data-structure a leader if it is the root of the tree.

Lemma 7.4.1

Once a node stop being a leader (i.e. the node in top of a tree). It can never become a leader again.

Proof: A node x stops being a leader only because of the UNION operation which made x child of a node y which is a
leader of a tree. From this point on, the only operation that might change the parent pointer of x is the FIND operation
which traverses through x. Since path-compression only change the parent pointer of x to point to some other node y.
Therefore, the parent pointer of x will never become equal to itself i.e. x can never be a leader again. Hence, once x stops
being a leader it can never be a leader again. [ ]

Lemma 7.4.2

Once a node stop being a leader then its rank is fixed.

Proof: The rank of a node changes only by a UN1ON operation. But the UNION operation only changes the rank of nodes
that are leader after the operation is done. Therefore, once a node stops being a leader it’s rank will not being changed by
a UNION operation. Hence, once a node stop being a leader then its rank is fixed. [ ]

Lemma 7.4.3

Ranks are monotonically increasing in the trees, as we travel from a node to the root of the tree.

Proof: To show that the ranks are monotonically increasing it suffices to prove that for all edge u — v in the data
structure we have rank(u) < rank(v). And this is true because the UNION operation only changes the parent pointer
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of a node u to point to a node v if u and v were leaders and either rank(u) < rank(v) before making the change or
rank(u) = rank(v) before making the change and then the algorithm increases the rank of v by 1. Hence, the ranks are
monotonically increasing in the trees, as we travel from a node to the root of the tree. [ ]

Lemma 7.4.4

When a node gets rank k than there are at least > 2¥ elements in its subtree.

Proof: We'll prove it using induction. For k = 0 it is obvious since a single element in the set. Now a node gets rank
k only if two roots of rank k — 1 were merged. By inductive hypothesis they each have at least > 2¥~! nodes in their
subtrees. Hence, the merged tree has > 28~1 + 2K=1 = 2K nodes. n

With this lemma we get the following corollaries:
Corollary 7.4.5

The following are true:

1. The number of nodes that get assigned rank k throughout the execution of the Union-Find data-structure is
at most oz.

2. For all vertices v, v.rank < |logn]|

3. Height of any tree < |_log2 nJ

Lemma 7.4.6

The time to perform a single find operation when we perform union by rank and path compression is O(logn)
time.

We will show that we can do much better. In fact, we will show that for m operations over n elements the overall
running time is O((n + m) log" n)

Definition 7.4.1: log* n )

It is the number of times we need to take log to get less than or equal to 1. So

o ifn<1
log"n = : ,
1+log"(logn) otherwise

Thus log" 2 = 1, log" 2% = 2. Similarly, log" 2% = 1+log" 22 = 2 +log* 2 = 3. It will also be useful to look at the inverse
function of log", Tower.

Definition 7.4.2: Tower(k)

Tower(k) = 2Twer(k=1) and Tower(0) = 1.

Observation 7.1. log*(Tower(k)) = k

Let Block(i) denotes a subset of vertices, and it corresponds to the interval [ Tower(i — 1) + 1, Tower(i)]. We corre-
spond Block(0) with the interval [0, 1]. Then we say a node v € Block(i) if v.rank € [ Tower(i — 1) + 1, Tower(i)].

Observation 7.2. The largest k such that for allt > k, Block(t) = @ will be k = log” n.

This is because

Block(k) = {v | v.rank € [Tower(log* n—1)+1, Tower (log" n) ]} = {v | v.rank € [logn+ 1, n]}
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Hence the number of blocks available is O(log™ n).
Now we will analyze the FIND(v) operation. Let P be the path visited. Let P = v = vy — v; — -+ — v =root.
Now consider the ranks of the vertices in P. We will have

vg.rank < vy.rank < - -+ < vg.rank

Imagine partitioning P into which blocks each element rank belongs to. Let INDEXg(v) is the index of the block that
contains v. Since ranks of the vertices are strictly increasing INDExg(v) is also increasing.

During FIND operation let going from one block to another is called jumping between blocks and going from one
vertex to another inside a block is called internal jump. We call a vertex small if the vertex and its parent are in same
block. Otherwise, we call the vertex large.

Lemma 7.4.7

During a single FIND(x) operation, the number of jumps between blocks along the search path is O(log* n).

Proof: During FIND operation since the ranks are strictly increasing once we pass through from a node in i* block to
anode in (i + 1) block we can never go back to the i*" block. So in a FIND operation we can do jumps between blocks at
most O(log" n) times. ]

Therefore, there can be at most O(log" n) many large vertices encountered in any FIND operation.

Lemma 7.4.8

At most |Block(i)| < Tower(i) many FIND operations can pass through an element x which is in the i*" block (i.e.
INDEX(x) = i) before x.parent is no longer in the i*" block. That is INDEXg(x.parent) > i.

Proof: Now consider the case that v and v.parent are both in the same block. Let v.parent is not root. Now we perform a
FIND operation that passes through x. Let ry,f is the v.parent.rank before the FIND operation and r,; is the v.parent.rank
after the FIND operation. By path compression we have ry¢; > rpef.

By the above discussion we have that the parent of a vertex v increases its rank every-time an internal jump goes
through v. Since there are at most |Block(i)| different values in i*” block and by definition we have |Block(i)| < Tower(i)
we have the lemma. ]

Hence any vertex v appears small at most Tower(i) times over the course of FIND operations that passes through v.

Lemma 7.4.9

There are at most nodes that have ranks in the i block throughout the algorithm execution.

_n
Tower(i)

Proof: By Corollary 7.4.5 we have that the number of elements with rank in the i*# block is at most
Tower(i) Tower(i)
n n n
Z=n

— < =
k k — oTower(i—1) i
k=Tower(i—1)+1 2 k=Tower(i—1)+1 2 2 Tower(l)

Lemma 7.4.10

The number of internal jumps performed, inside the i*# block, during the lifetime of UN1ON-FIND data structure is

O(n).

Proof: A vertex v in the i*" block can have at most |Block(i)| internal jumps, before all jumps through v are jumps
between block by Lemma 7.4.5. There are at most ﬁw vertices with ranks in i*# block through out the algorithm ex-
ecution by Lemma 7.4.9. Thus, the total number of internal jumps is |Block(i)| - ﬁr(l) < Tower(i) - #r(l) = n. Hence
there are at most O(n) many internal jumps. [ ]
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Theorem 7.4.11

The number of internal jumps performed by the Un1oN-FIND data structure overall O(nlog* n).

Proof:  Since in each block the number of internal jumps is O(n) and there are O(log” n) many blocks we have total
number of internal jumps by the Un1on-FIND data structure is O(n log™ n). ]

Hence over the course of all FIND operations the total number of small vertices can be encountered is O(nlog* n)

Theorem 7.4.12

The overall time spent on m FIND operations, throughout the lifetime of a Union-Find data structure defined over
n elements is O((n + m) log" n).

Proof: 'With m many FIND operations the total number of small vertices encountered is O(nlog” n) as we proved earlier.
And the total number of large vertices encountered is O(mlog™ n) since each FIND can encounter O(log" n) many large
vertices by Lemma 7.4.7. Hence total taken is O((m + n) log* n). [
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Red Black Tree Data Structure

A red-black tree is a special type of binary search tree with one extra bit of storage per node, its color which can be either
red or black. Also, we keep the tree approximately balanced by enforcing some properties on the tree.

Definition 8.1: Perfect Binary Tree

It is a Binary Tree in which every internal node has exactly two children and all leaves are at the same level.

Lemma 8.1

Every perfect binary tree with k leaves has 2k — 1 nodes (i.e. k — 1 internal nodes).

Definition 8.2: Red Black Tree

A red-black tree is a binary tree with the following prop-
erties:

« Every internal node is key/NIL node. Every leaf is
a “NIL” node.

« Each node (NIL and key) is colored either red or
black.

+ Root and NIL nodes are always black.

+ Any child of a red node is black.

« The path from root to any leaf has the same number
of black nodes. Figure 8.1: A Red Black Tree

We call the number of black nodes on any simple path from but not including a node x down to a leaf the black-
height of the node, denoted by bh(x). We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values.

Lemma 8.2

A Red-Black Tree with n internal nodes or key nodes has height at most O(log n).

Proof: We will first show that for any subtree rooted at node x contains at least 22#(*) — 1 internal nodes. We will show
this using induction on the height of the tree. For the base case let height of x is 1. Then x must be a leaf. Therefore,
the subtree rooted at x has at least bh(x) = 1. Hence, 22#*) —1 = 21 —1 = 1 nodes which is true. For inductive step
let x has height greater than 1, and it is an internal node of the R-B Tree. Now x has two children. Hence, each child
has black-height either bh(x) or bh(x) — 1. By inductive hypothesis, the subtrees rooted at the children of x have at least
2bh(x)=1 _ 1 internal nodes. Thus, subtree rooted at x has at least 20/()=1 — 1 4+ 26h(*)=1 _ 1 4 1 = 26h(*) _ { internal nodes.
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Now if the R-B tree has height h. Then any path from the root to a leaf at least half the nodes including the root
must be black. So bh(root) > % Thus, n > 2% -1 = h< 2log(n +1). Hence, we have the lemma. [

Not all trees can be colored in a way that satisfies the properties of a red-black
tree. Consider the following tree:

In this example the root has to be black. The other two internal nodes can

not be black since otherwise the path from the leaf of the root to root has only 2

black nodes but in the path from bottom most leaf to root will have 3. Then those

two internal nodes has to be red. But that violates the property that a red node

can not have a red child. Hence, this tree can not be colored in a way that satisfies
the properties of a red-black tree.

NIL

Since by the lemma the R-B tree has height at most O(log n) and it is a binary search tree we can perform search
of a node using FIND in O(log n) time. So now we will focus on the insertion and deletion operations in a red-black tree.
To insert or delete a node in a red-black tree we will do rotations to balance the tree again. So first we will visit rotations.

8.1 Rotation

A rotation is a local operation that changes the structure of a binary tree without violating the binary search tree property.
There are two types of rotations: left rotation and right rotation.

When we do a left rotation on a node we assume that its right child is not NIL. The left rotation “pivots” around the
link from the node to its right child and makes the right child the new root of the subtree with the node as its left child.
Similarly, we can explain the right rotation. The rotations behave like the following:

Right Rotate

Left Rotate

Figure 8.2: Left and Right rotate about u — v

Algorithm 35: LEFT-RoTATE(T, x) Algorithm 36: RIGHT-ROTATE(T, x)
1 y «— x.right 1y «— x.left

2 x.right «— y.left 2 x.left «— y.right

3 if y.left # NIL then 3 if y.right # NIL then

4 L y.left.parent «— x 4 L y.right.parent «— x

5 y.parent «— x.parent 5 y.parent «— x.parent

6 if x.parent == NIL then 6 if x.parent == NIL then

7 L T.root «—y 7 L T.root «—y

8 else if x == x.parent.left then 8 else if x == x.parent.left then
9 L x.parent.left «— y 9 L x.parent.left «— y

10 else 10 else

11 L x.parent.right «— y 11 L x.parent.right «— y

12 y.left «— x 12 y.right «— x

13 x.parent «— y 13 x.parent «— y

Both LEFT-ROTATE and RIGHT-ROTATE take O(1) time. Only some constantly many pointers are changed by rotation
all other attributes in a node remain the same.
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8.2 Insertion

We will now describe how to insert a node in a red-black tree in O(log n) time. We will insert the node in the tree in place
of a leaf replacing a NIL node. After that we will color the node red. Let the node added is v. We define the attribute uncle

which is basically sibling of the parent. Now two cases can happen:

Case I: v.uncle.color = Red: Then v.parent.parent is black. In this case we can recolor v.parent.parent to red and both
v.parent and v.uncle to be black. This will preserve the number of black nodes in any simple path from root to
any leaf. Now the color of v.parent.parent is red, and therefore we iterate the same process on v.parent.parent.

Case II: v.uncle.color = Black: In this case we need two rotations. First we do a left rotation on v.parent. After that we
do a right rotation on v.parent.parent. After the rotations, we recolor the nodes. The color of v.parent.parent

>

and the color of v.parent will be red. The color of v will be recolored black. This will preserve the number of
black nodes in any simple path from root to any leaf. And this case now stabilizes the tree, and we can stop

(d"d0)aLvioy-1HOTY

the process.
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So analyzing the insertion process we can insert a node in a red-black tree and using the two cases we can recolor the
nodes the balance the tree.

Algorithm 37: RB-InserT(T, 0) Algorithm 38: RB-INSERT-F1xuP(T, v)
1y «— NIL, x < T.root 1 while v.parent.color == RED do
2 while x # NIL do 2 if v.parent.parent == NIL then
3 ye—x 3 v.parent.color «— BLACK
4 if v key < xkey then 4 L Break
5 | x — xleft 5 ou «— v.parent.parent.right // Uncle
6 else 6 vpp <— v.parent.parent
7 L x «— x.right 7 if vu.color == RED then
8 v.parent.color «— BLACK // Case I
8 v.parent «—y 9 vu.color «— BLACK
9 if y == NIL then 10 vpp.color «— RED
10 L T.root «— v 1 v — vpp
11 else if v.key < y.key then 12 else
12 L yleft —o 13 LEFT-ROTATE(T, v.parent) // Case I1
13 else 14 RIGHT-ROTATE(T, vpp)
14 L y.right «— v 15 v.color «— BLACK
15 v.left «— NIL, v.right «— NIL, v.color «— RED 1 upp.color «— RED
17 Break

16 RB-INSERT-F1xuPp(T,0) —

Since the Case I can happen at most O(logn) times as each use of Case I increase the height by 2, the while loop
can run at most O(log n) times. Therefore, insertion of a node in a red-black tree takes O(log n) time.

8.3 Deletion

Like insertion, deletion of a node involves recoloring and rotations to maintain the properties of a red-black tree. Here
we will use a notion of double-black color. In the deletion we will use something called in-order traversal of the binary
tree and use successor and predecessor of a node in the traversal.

Definition 8.3.1: In-Order Traversal

In-Order Traversal of a binary tree is a traversal where:

« Recursively traverse the current node left subtree.
« Visit the current node.
« Recursively traverse the current node right subtree.

The in-order successor (predecessor) of a node is the next (previous) node in the in-order traversal of the tree.

Observation 8.1. For any node x the in-order successor of x is the leftmost node in the right subtree of x. Similarly, the
in-order predecessor of x is the rightmost node in the left subtree of x.

To delete a node x we will replace its key by the key of its in-order successor or predecessor (say y) and then delete
y i.e. after replacing the key of x by the key of y, it will still have the color of x.color. We replace with in-order successor
unless x has no right child. In that case we replace with in-order predecessor. If x has no children then we have y = x.

y is either a non-NIL leaf or has exactly one child.

1. y has a child then child must be colored red since otherwise the NIL child of y and any NIL node in the subtree
rooted at child of y will have different black-height. Therefore, y must be colored black. Hence, we replace y by its
child and color it black.

2. yis a non-NIL leaf and its colored red. Then we can simply remove y from the tree.
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So the only case remained to analyze is when y is a non-NIL leaf and colored black. Now the situation is complicated
since removing y would create black-height imbalance in the tree.

Observation 8.2. Ify.color is black then y must have a sibling since otherwise sibling of y is NIL. Then that NIL node and
any NIL node in the subtree rooted at y will have different black-height.

So we replace y with a NIL node and color it double-black which will be counted has 2 black nodes to maintain the
black-height. Now we will resolve the double-black color by rotation, recoloring or pushing up the double-black color.
We will use the following pointers

+ y.sibling to denote the sibling of y.
« y.left-nephew and y.right-nephew to denote the left and right child of y.sibling.
We will use the following cases to resolve the double-black color:

Case I: y.sibling, y.parent, y.left-nephew, y.right-nephew are all Black. In this case we can make y.parent the double black
instead of y and recolor the y has black node and sibling of y red color.

@ Recolor
_ >

Case II: y.sibling, y.left-nephew, y.right-nephew are Black & y.parent is Red. Here we recolor y.parent to black and
y.sibling to red. This will preserve the number of black nodes in any path from root to any leaf. So we stop.

@ @ o ° @
—_—

Case III: y.sibling is Black and y.right-nephew is Red. Then we do a LEFT-ROTATE on y.parent. Then we recolor y.sibling

Color same as y.parent.color

-/

yp

Same color

to the same color as y.parent. And we recolor y.parent to black, y.right-nephew to red and y to black. And now
we stop.
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Case IV: y.sibling, y.right-nephew are Black & y.left-nephew is Red. Therefore, both the children of y.left-nephew have
color black. Here we first do a RIGHT-ROTATE on y.sibling. Then we recolor y.left-nephew to black and y.sibling

Same color
@ ’ ‘ ‘, |
RIGHT-ROTATE(y.5) @ E Recolor

to red. Now we have exactly the same situation as in Case III with respect to node y after recoloring. So we
follow the steps of Case IIL

Case V: y.sibling = Red. In this case y.left-nephew and y.right-nephew must be black. Since y.sibling is Red, y.parent is
Black. Then we do a LEFT-ROTATE on y.parent. Then we switch the colors of y.parent and y.sibling i.e. we color

FTROTATE(yP)‘ @ @ Recolor

y.parent to red and y.sibling to black. Now we have the sibling of y has color black. So we are now in one of
the Case I-IV. So we can follow the suitable case to resolve.

This completes the description of the deletion process in a red-black tree. Now notice every time we are pushing the
double-black color up the tree, or we are stopping. Hence, it only takes O(log n) time to resolve the double-black color.
So the deletion process in a red-black tree takes O(logn) time.
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Maximum Flow

9.1 Flow

Suppose we are given a directed graph G = (V, E) with a source vertex s and a target vertex ¢. And additionally for every
edge e € E we are given a number ¢, € Z, which is called the capacity of the edge.

Definition 9.1.1: Flow

An s —t flow is a function f : E — IRy which satisfies the following:
D Ve€kE, f(e) < ce
@ VoeV\{st}, ¥ fle= X f(e

ecin(v) e€out(v)

Also the value of a flow f is denoted by |f| := 2  f(e).

ecout(s)

Before proceeding into the setup and the problem first we will assume some things
Assumption. « in(s) = 0 i.e. there is no edge intos.
- out(t) = 0 i.e. there is no edge out of t.

« There are no parallel edges

Lemma 9.1.1

For any flow f, [f|= X f(e)

ecin(t)

Proof: We have for every edge e € E, v € V such that e € in(v) and 3 u € V such that e € out(u). Hence, we get

D@=2 D flo=3, > flo= Y| D, flo- >, flo|=0

ecE veV ecin(v) veV ecout(v) veV |ecin(v) ecout(v)

Now we know Vo e V\{s,t}. > f(e)= 2 f(e). Therefore, we get
)

ecin(v ecout(v)

DD - D f)=0= Y| > flo- > flaol=0= > flo- >, flo

veV |e€in(v) e€out(v) ve{s,t} |ecin(v) e€out(v) ecout(s) ecin(t)

Hence, we have |f| = Y f(e). [

ecin(t)
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Max FLow

Input: A directed graph G = (V, E) with source vertex s and target vertex ¢ and for all edge e € E capacity
of the edge ¢, € Z,

Question: Given such a graph and its capacities find an s — ¢ flow which has the maximum value

Example 9.1.1

Consider the following directed graph with capacities: V = {s, t,u,0}, ¢sy = 2,¢s0 = Cut = Cot = Cyp = 1. Firstly

the following function: f” : f'(s,u) =2 = f(u,t). It is not a flow since f(u,t) =2 > 1 = ¢, ;. Now we define three
different flow functions:

« f: f(s,u) = f(u,0) = f(v,t) =1 and otherwise
0. Therefore, |f| =1

e g:g(s,u) =g(u,t) =1, g(s,0) =g(v,t) =1 and
otherwise 0. Therefore, |g| = 2

e h: h(s,u) =2, h(u,t) = h(u,0) = h(v,t) =1 and
otherwise 0. Therefore, |h| = 2

Notice here g and h has the maximum flow value
since ) ¢, =2
ecin(t)

9.2 Ford-Fulkerson Algorithm

Definition 9.2.1: Residual Graph

Given a directed graph G = (V, E) and capacities C for all e € Eand an s — ¢ flow f the residual graph Gy = (V, Ey)
has the edges with the following properties:

(D If (u,0) € E and f(u,0) > 0 then (v,u) € Er and cf(u,v) = f(u,0). Such an edge is called a backward edge.
() If (u,0) € E and f(u,0) < c,, then (u,0) € Ef and cf(u,0) = ¢y — f(u,0). It is called forward edge.

Algorithm 39: FORD-FULKERSON

Input: Directed graph G = (V, E), source s, target t and edge capacities C, for alle € E
Output: Flow f with maximum value

1 begin

2 fore € Edo

3| | fley=0

4 while 3 s > t path P in Gy do

5 0 «— min{cy(e)} for e = (u,0) € P do
ecP

6 if e is Forward Edge then

7 Lf(u,z))<—f(u,v)+5

8 else

’ | flow) — flo,u)-8

We call one iteration of the While loop at line 4 Flow Augmentation.
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Lemma 9.2.1

At any iteration the f’ obtained after the flow augmentation of the flow f is a valid flow

Proof: At any iteration let P be the path from s ~» t in the residue graph Gy and § = mig cr(e). Let f’ be the new
ec

function such that for each (u,v) € P if (u,0) is forward edge in Gy then f’(u,v) = f(u,v) +J and if (u,v) is backward
edge in Gy then f’(v,u) = f(v,u) — & and for other edges e € E\ P, f"(e) = f(e).

Now since § = reneig cr(e), cr(e) = S for all e € P. Hence, if (u,0) is backward edge then (v,u) € E and cf(u,0) =
f(u,v). Hence, f'(v,u) = f(v,u) — & > 0. Therefore, for all e € E, f'(e) > 0.

Now first we will show f’(e) < c. for all e € E. If (u,0) € P is a forward edge then (u,0) € E and cf(u,0) =
cuo — f(u,0). Therefore, f'(u,v) = f(u,v) +8 < f(u,0) +cyp — f(u,0) = cyp. Now if (u,0) € P is a backward edge
then (v,u) € E and cf(u,v) = f(u,0). Therefore, f'(v,u) = f(v,u) = < f(v,u) < cyy. For other edges e € E\ P,
f’(e) = f(e) < ce. Therefore, f'(e) < c. foralle € E

Now we will prove for allv € V' \ {s, ¢}, Z( )f’(e) = 2( )f’(e). If v is not in the path P in G then, f”(e) = f(e)

ecin(v e€out(v
for all edges e € in(v) U out(v). Hence, the condition is satisfied for such vertices. Suppose v is in the path P. Then there
are two edges e;(v) and e, in P which are incident on v. If both are forward edges or both are backward edges then one
of them is in in(v) and other one is in out(v). If ; is backward edge then we will denote it by e; too. Now WLOG suppose

e, € in(v) and e, € out(v) we have

D, fl@=fless+ > flo=fle)xd+ > flo= ), f(e

ecin(v) ecin(v)\{e1} ecout(v)\{ez} ecout(v)

If one of ey, e; is forward edge and other one is backward edge then either e;,e; € in(v) (when e; is forward and e; is
backward) or ey, e; € out(v) (when e; is backward and e, is forward). Now if eq, e € in(v), f'(e1) + [’ (e2) = f(e1) +5 +
f(e2) =8 =f(e1) + f(ez) and if eq, e € out(v) then f'(e1) + f'(e2) = f(e1) =5+ f'(e2) +§ = f(e1) + f(ez). Hence,

D= D fla= > flo= > fle

ecin(v) ecin(v) ecout(v) ecout(v)

Hence, f” is a valid flow. u

Lemma 9.2.2

At any iteration given Gy if the flow, f” obtained after flow augmentation of f by § then
If'I=1f1+3

Proof: Since we augment flow along an s ~» t path, the first edge of the path is always in out(s). Let the first edge is
e = (s,u). Now e has to be a forward edge in the path because otherwise (u,s) € E and then there is an incoming edge in
G which is not possible. Hence,

= D, flo= Y fla+fe= > fl+fle+d= Y fle)+5=Ifl+5

ecout(s) ecout(s)\{e} ecout(s)\{e} ec€out(s)

Hence, we have the lemma. ]

Lemma 9.2.3

At every iteration of the Ford-Fulkerson Algorithm the flow values and the residual capacities of the residual graph
are non-negative integers.

Proof: Initial flow and the residual capacities are non-negative integers. Let till i*" iteration the flow values and the
residual capacities were non-negative integers. Let the flow after i*” iteration was f. Hence, V e € E, f(e) € Z,. Therefore,
in the Gy for all e € Ey, Cf(@) € Zy. Hence, § € Z,. Therefore,V e € E, f'(e) € Z,. And Therefore, for all e € Ef where
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Gy is the residual graph of the flow f”, ¢+ (e) € Z,. Hence, by mathematical induction the lemma follows. ]

At any iteration let P be the path from s ~> t. Then for all e € P, cg(e) > 0. Therefore, § = mi};l cr(e) > 1. Therefore,
ec

the algorithm must stop in at most ), ¢, since we can have the value of a flow to be at max the value of the sum of
ecout(s)

capacities of edges in out(s) and Therefore, we can increase the flow at max that many times.

Lemma 9.2.4

If f'is a max flow then there is no s ~» t path in Gy.

Proof:  Suppose there is an s ~» t path P in Gy. We will show that then f is not a max flow following the algorithm.
Then Ve € P, cg(e) > 0. Hence, § = mi[r)l cr(e) > 1. Now after the flow augmentation process of f by & we get a new
ee

valid flow f” by Lemma 9.2.1 and by Lemma 9.2.2 we have |f’| = |f| +J > ||f]. Hence, f is not a maximum flow. Hence,
contradiction. Therefore, there is no s ~» t path in Gry. ]

9.2.1 Max Flow Min Cut

Definition 9.2.2: Cut Set

For a graph G = (V,E) and a subset A C V, the cut (A, V' \ A) is a bipartition of V where the edges E4 of the graph
Ga = (A, V\AE,) is the set Ex = EN (A x (V \ A)).
Now if s, t are two vertices of G then an s — t Cut (A,V \ A) isa cut such thats € Aandt € V \ A.

Now we define for a cut (A, V '\ A) the Capacity of the Cut (A,V\ A) = 3, c.. Forans—tcut (A, V \ A) we denote

ecE
the capacity of the cut by cap(A). An s —t Min Cut is an s — t cut of minimum capacity. Then we have the following

relation between cut and flow.

Lemma 9.2.5
Given a graph G = (V,E), s, t, ¢, € Z, for all e € E for any flow f and an s — ¢ cut (A, V' \ A)

If1 < cap(A)

Proof: Given f and the s — ¢ cut (A, V' \ A) we have

fl= D, fle

e€out(s)

=3 D feo- > fle
vEA |ecout(v) ecin(v)

= Z f(e) - Z f(e) [Edges for both endpoints in A are canceled out]
e=(u,v), e=(u,v),
u€EA v¢A u¢A,veEA

= > flo- D fle)
ecout(A) ecin(A)

< Z f(e) < Z ce = cap(A)
ecout(A) ecout(A)

Hence, we have the lemma. u

Having this lemma we have for any flow f and s — t cut (A, V \ A) we have

< A < i A
If] < cap(A) = max Ifl < Sitcurg}lAr}V\A)cap( )
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So we have the following theorem that the value of maximum flow is equal to the capacity of minimum cut.
Theorem 9.2.6 Max Flow Min Cut
Given a graph G = (V,E), s, t, ¢, € Z, for all e € E. Then the following are equivalent:

(1) fis a maximum flow.

(2) There is no s ~» t path in Gy

(3) There exists an s — ¢ cut of capacity |f]|

Proof:
(1) = (2): This is by Lemma 9.2.4.

(2) = (3): We are given a flow f such that there is no s ~ t path in Gy. We will construct an s — ¢ cut which has the
capacity |f|. Now take A to be all the vertices reachable from s in G¢. This is a valid s — ¢ cut since s € A
and as there is no s ~» t path in Gy, t ¢ A. Now

fl= D> flo- > flo)

ecout(A) ecin(A)

Now V e = (u,v) € E where u € Aand v ¢ A we have ¢, , = f(u,0) = ¢y, — f(u,0) = 0 since otherwise
Cuo— f(,0) # 0 = cuo > f(u,0) = (u,v) € Efr and Therefore, v is reachable from s but v ¢ A,
contradiction. Therefore, (u,v) is a backward edge. Also, V e = (u,v) € E where u ¢ A and v € A we have
f(u,0) = 0 since otherwise f(u,0) > 0 = (v,u) € Ef and Therefore, u is reachable from s but u ¢ A,
contradiction. Hence, we have

fl= D> flo= D, flo= > c=cap(a)

ecout(A) ecin(A) ecout(A)
(3) = (1): Now by Lemma 9.2.5 we have for any flow f and s — ¢ cut

< A = < i A
fI < cap(4) = max|fl < min cap(A)

Now given f there exists an s — t cut of capacity |f|. Hence, f is a max flow.

We will get another proof of the Max Flow Min Cut Theorem in subsection 14.4.4 using strong duality of linear program-
ming.

Hence, at the end of the Ford-Fulkerson Algorithm let the flow returned by the algorithm is f. The algorithm
terminates when there is no s ~» t path in Gy. Hence, by Max Flow Min Cut Theorem we have f is a maximum flow. This
completes the analysis of the Ford-Fulkerson Algorithm.

Since the capacities of the edges can be very large we want an algorithm that returns the maximum flow with
running time poly(n, m,log c.) where n is the number of vertices and m is the number of edges and log c, basically means
number of bits at most needed to represent the capacities.

But Ford-Fulkerson algorithm takes does not run in poly(n, m,log c.) instead poly(n, m, c.) as the while loop in the
algorithm takes poly(c.) many iterations. For example in the following graph: it takes around 100 steps

100 100

—_

(D

100 100

and in general Ford-Fulkerson takes O(|fmax|) time. For this reason we will now discuss a modification of the Ford-
Fulkerson Algorithm which takes poly(n, m,log c.) time, Edmonds-Karp Algorithm.
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9.2.2 Edmonds-Karp Algorithm

To get a poly(n, m,log c.) time algorithm we will always pick the shortest s ~» t path in the residual graph. This algorithm
is known as the Edmonds-Karp Algorithm

Suppose f; be the total flow after i*" iteration. And Gy, be the residual graph with respect f;. Then fy(e) = 0 for all
e € E and Gy, = G. Also suppose dist;(v) = Shortest s ~» v path distance in the residual graph G,. Hence, dist;(s) = 0 for
all i and dist;(t) = oo at the end of the algorithm.

In i*" iteration of the Ford-Fulkerson Algorithm or Edmonds-Karp Algorithm if P is the s ~> ¢ path in the residual graph
Gy, where e = (u,0) € P is such that cf (u,0) =6 = mi}r)l cf, (e) then the edge (u,0) is not present in the next residual
ee

graph Gy, . Thus, at least one edge disappears in each iteration of Ford-Fulkerson or Edmonds-Karp Algorithm.

Now we will prove following two lemmas which will help us to prove that the Edmond-Karp algorithm takes O(mn)
iterations.

Lemma 9.2.7

At any iteration i, Y v € V, dist;(v) < disti+1(0)
Proof: Suppose this is not true. Then let i be the first iteration in which there exists a vertex v € V such that dist; (v) >

distiy1 (v). We pick such v which minimizes dist;;;(v). Consider the shortest path P from s v v in Gy, ,. Hence, length of
P, |P| = dist;41(v). Let (u,v) be the last edge of P.

o
distiy1(v) = distiy1(u) +1 > dist;(u) + 1

Then

Here the last inequality follows because v is the vertex which has the minimum dist;;; (v) among all the vertices w € V
which follows dist;(w) > dist+1(w). Now we will analyze case wise.

« Case 1: (u,0) € Er. Then
dist;(v) < dist;(u) +1 < distj11(v)

But this is not possible since dist;(v) > dist;41(0).

+ Case 2: (u,0) ¢ Ef,. Then (v,u) € Ey,. Since (u,0) € Ef,, then we must have sent flow along (v, u). Since we take
the shortest s ~ ¢ path in Gy, in the algorithm we have dist; (u) = dist;(v) + 1. But then

dist;(u) < distiy1(v) =1 = disti11(v) > dist;(v) + 2
But this is not possible.

Hence, contradiction ¢ Therefore, for all iterations i, for all vertices v € V, dist;(v) < dist;41(0). [

Lemma 9.2.8

For any edge e = (u,v) € E the number of iterations where either (u,v) appears or (v, u) appears is at most O(n)
ie.

Hi: (u,0) ¢ G, (u,0) € Gfm}|+|{i: (v,u) ¢ G, (v,u) € Gﬁ+1}| =0(n)

Proof:  Following the proof of Lemma 9.2.7 in the second case we showed if (u,0) ¢ Gy, but (u,0) € Gp,, then
dist;y1(v) > dist;(v) + 2. Hence, the distance increases by at least 2. Now this can happen at most O(n) many times
since V i, dist;(v) < n — 1. Hence, the number of iterations where either (u,v) appears or (v, u) appears is at most O(n). m

With this this lemma we will prove that the Edmonds-Karp Algorithm takes O(mn) iterations.
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Theorem 9.2.9

Edmonds-Karp Algorithm terminates in O(mn) many iterations.

Proof: For k iterations at least k edges must disappear. Since each edge can reappear O(n) times by Lemma 9.2.8, it can
disappear at most O(n) many times. In each iteration at least one edge disappears. Now after O(mn) iterations number
of disappearances is at most O(mn). But after O(mn) many disappearances there are no edges remaining to disappear or
reappear and Therefore, there is no s ~» t path. Hence, the algorithm terminates. Therefore, the Algorithm terminates in
O(mn) iterations. [

Hence, Edmonds-Karp Algorithm takes O(m?n)poly(log c.) = O (mznlogo(l)(ce)) time since it takes O(mn) iter-
ations and in each iteration it finds the shortest s w» t path in G, in O(m) time and in each iteration it does addition and
subtraction and finds minimum of the capacities which takes polynomial of the bits needed to represent them time.

9.3 Preflow-Push/Push-Relabel Algorithm

In this algorithm we will maintain something called “Preflow” which is not a valid flow. Unlike Ford-Fulkerson, Edmonds-
Karp it does not maintain a s ~» ¢ path in the residual graph and the algorithm stops when the preflow is actually a valid
flow.

Definition 9.3.1: Preflow

Given a graph G = (V, E) and the edge capacities c., a function f : E — IR, is a preflow if it satisfies:
D YeckE, f(e) < ce.
@ VoeV\{s, X flo= I f(eo

e€in(v) e€out(v)

Observation 9.1. Unlike the definition of Flow here in the second criteria we need Y, f(e) = Y f(e) instead of
e€in(v) e€out(v)
X fley= 2 fe).

ecin(v) ecout(v)

Now define for all v € V and for all preflow f, excessr(v) = X f(e)— X f(e). If f is a preflow then
ecin(v) ecout(v)

excessr(s) < 0and Vo € V\ {s}, excesss(v) = 0
f f

Lemma 9.3.1

For all preflow f
Z excessg(v) =0
veV
Proof: We have
Dexcess() = | >0 fle)= Y f@|=) > f@=) > fle)=) fleo-) fle)=0

veV veV |ecin(v) ecout(v) veV ecin(v) veV ecout(v) ecE ecE

Hence, we have the lemma. ]

Now for each v € V we assign a label [(v) € Zy. The algorithm then sends flow from u — v if [(v) = I(u) — 1.

77777777 (o)--------1) =l -1
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Algorithm 40: PREFLOW-PUsH

Input: Directed graph G = (V, E), source s, target t and edge capacities C, for alle € E
Output: Flow f with maximum value

1 begin

2 Initially V e = (s,u) € E, f(e) = c. and f(e) = 0 for all other edges.
3 I(s) «—n

4 forv e V\ {s} do

5 L l(v) «—0

6 while 3o # ¢, excessg(v) > 0 do

7 if 3 u, such that (v,u) € Ef andl(u) = [(v) — 1 then

8 0 «— min {excessf(v), cr(o, u)}

9 if (v, u) is Forward Edge then

10 Lf(v,u)<—f(0,u)+5

11 else

12 Lf(u,v)(—f(u,v)—c?

13 else

14 | 1(v) e« I(0) +1 //Relabeling

In the algorithm in line 8 if § = c¢(v, u) then we call it saturating push and if § = excessy(v) then we call it non-saturating

push.

Now we will show an example of how the algorithm on a graph. We will start the algorithm with the following
graph:

O————®

l: 3 0 0

Below we will show change of the residual graph and preflow in each iteration of the WHiLE loop:

e Step 1:
¥ _ 6
¢ 4 Since excessf(v) = 6 > 0. So in first iteration v is taken.
@‘ @ ~® Since there is no edge (v,u) with I(u) = I(v) — 1, label of v
I 3 1 0 got increased
exceSSf N —6 6 0
e Step 2:
6 4
f: > Since excessf(v) = 2 > 0, in second iteration again v is
@‘ 6 (- 4 @ selected. There is an edge (v,t) with [(#) = 0 = [(v) — 1 =
N 1-1. Now & = cs(v,t) = 4. Hence, saturating push. The
I3 ; ; preflow gets updated, f(s,0) =6, f(v,t) = 4.
excessy i _g 9 4
e Step 5:
‘ 6 4
[ > > Since excesspf(v) = 2 > 0, in next 3 iterations again v is
@ 6 () 4 @ selected. Since there is no edge (v,u) with I(u) = I(v) — 1,
N label of v gets increased every time. Which becomes 4 after
I3 14 0 3 iterations.
excessf : —6 2 4
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o Step 6:
4 4 Since excessf(v) = 2 > 0, in this iteration again v is selected.
f There is an edge (v,s) with I(s) =3 =1(v) -1 =4—-1. Now
@ 2 ) 4 @ 6 = excess(v,s) = 2. Hence, it’s non-saturating push. So the
~ preflow gets updated f(s,0) = 6 -2 = 4, f(v,t) = 4. Now
I3 4 4 0 it’s a valid flow. Now there is no vertex with postive excess.
excessy 1 —6 20 4 Hence, the algorithm stops.

Observation 9.2. Labels are monotonically non-decreasing.
Observation 9.3. For every iteration f is always a preflow. The proof is similar to Lemma 9.2.1 but use inequalities.

Observation 9.4. 3 excessy(v) =0 andV v € V'\ {s}, excesss(v) > 0. Hence, excesss(s) < 0 = [(s) is unchanged.
veV

Now suppose f* denote the preflow after the i*" iteration of the algorithm. Then define

Fe) = {ce when e = (s,u)

0 otherwise

Now we will show the correctness of the algorithm.

Lemma 9.3.2

YoeV,Vi, excessfi(v) >0 = Jo~wsinGy

Proof:  First we fix v and i such that excesssi > 0. Let X be the set of vertices reachable from v in Gyi. Now

Zexcessfi(u)zz Z fi(e)— Z fi(e) = Z fi(e)— Z fi(e)

ueX ueX |ecin(v) ecout(v) ecin(X) ecout(X)

Now if 3 f(e) > OthenJe = (v/,u) € Esuchthatu’ ¢ X andu € X and f'(e) > 0. Then the backward edge

e€in(X)
(u,u’) € Egi. Then v’ is reachable from v in Gyi. But u’ ¢ X. Contradiction # Therefore, ) f%(e) = 0. Hence,
ec€in(X)
Z excessgi (u) = He) — Z fie) <0
ueX ecifi(X) ecout(X)

But from Observation 9.4 we have YV w € V'\ {s}, excesspi(w) > 0. But at the same time 3} excesss:(u) < 0 and
ueX

excesspi(v) > 0. Hence, 3 a vertex u € X such that excesssi (u) < 0. But we know only vertex with negative excess is s.
Therefore, s € X. Hence, s is reachable from v. [ ]
Lemma 9.3.3

Vi, if (u,0) € Gpi then I(v) > I(u) - 1.

Proof: We will prove this using induction on i. Initially [(s) = nand [(v) = Oforallv € V'\ {s}. Hence, for all edges (u, v)
where u,v # s this is satisfied. All the other edges incident on s are in in(s) in the residual graph. And I(s) = n > I(u) = 0.
Therefore, the base case is followed.

Now suppose the condition is true for f~!. Now in the i*? iteration suppose the selected vertexis v € V' \ {t} with
excesspi-1 > 0. Now there are two possible cases.

e Case 1: If the step is relabeling then f*~! = f’, Gsii = Gyi but v is relabeled by [(v) + 1. Now for any edge
e = (u,0) € in(v) by Inductive Hypothesis I[(v) > I[(u) -1 = Il(v)+1 > I(u) — 1. Now consider any edge
e = (v, w) € out(v). By Inductive Hypothesis we have [(w) > I(v) — 1. Now if [(w) = [(v) — 1 then we would have
pushed flow along the edge (v, w). Since that is not the case we have I[(w) > [(v) — 1. Therefore, [(w) > (I(v) +1) — 1.
Hence, the condition is satisfied.
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e Case 2: If the step is pushing flow then suppose we push flow along the edge (v, w) € Epi-1 and I[(w) = I(v) — 1.
Now if we push flow along the edge (v, w) we might introduce the reverse edge (w,v) in Gyi. In that case [(v) =
I(w) +1 > I(w) — 1. Hence, the condition is satisfied.

Therefore, by mathematical induction Vi,V (u,v) € Egi, I(v) > I(u) — 1. [

Corollary 9.3.4

There is no s ~» t path in G in any iteration i. Thus when the algorithm terminates f is a max flow.

Proof:  Now I(s) = nand [(t) = 0. We fix v and i. If there is a s > v path in Gy then length of the path is at most
n — 1. For each edge in the path the label decreases by at most 1 by Lemma 9.3.3. Hence, [(v) > 1. Therefore, for every
vertex v € V, reachable from s we have [(v) > 1. But [(¢) = 0. Hence, t is not reachable from s. Hence, if the algorithm
terminates, band if f is a valid flow then y Max Flow Min Cut Theorem it is a max flow. ]

Corollary 9.3.5
YoeV,Vil(v) < 2n.

Proof:  Suppose 3 v,i such that [(v) = 2n and excessyi(v) > 0. By Lemma 9.3.2 there exists an v ~> s path in Ggi. Now
by Lemma 9.3.3 for each edge in the path the label decreases by at most 1 and the length of the path is at most n — 1. Since
I(v) = 2n, I(s) = n+ 1. But we know I(s) for all i by Observation 9.4. Hence, contradiction # Therefore, for all v € V and
Vi, l(v) < 2n. [

Corollary 9.3.6

Total number relabeling operations is < 2n?

Proof: By Corollary 9.3.5 each vertex label can be at most 2n. So total number of relabeling operations done in the
algorithm is at most 2n? u

Now we need a bound on the number of push operations. We will count separately the number of Saturating
Pushes and number of Non-Saturating Pushes.

Lemma 9.3.7

Total number of saturating pushes is < 2mn

Proof:  We first fix an edge (v, w). Now we will count the number of saturating pushes along (v, w). Then § = c¢ (0, w).
Now consider the scenario of two consecutive saturating pushes along (v, w). When the first saturating push along (v, w)
occurred we have [(w) = [(v) — 1. Now if (0, w) is forward edge then § = cf(v, w) = ¢y w — f (0, w). Then new flow along
(v, w) is f (v, w) +cr (v, w) = ¢y, Hence, the edge (v, w) vanishes and the flow along (w, ) is cy,,. If (0, w) is a backward
edge then § = cp(w,v) = f(w,0). Hence, then new flow along (w,v) is f(w,v) — 6 = 0. Hence, again the (w,v) edge
vanishes and the flow along (w,v) is f(w,v).

———————————————— I(v) ————e- - --------1(v)
G& Saturated Push N @%

7777777 @————————l(w):l(v)—l W)W = (o) — 1

Therefore, after a saturated push along (v, w) the edge vanishes and the (w,v) edge is there. Hence, in order for
another push along (v, w) the algorithm must push flow along (w,v). And this happens when we have the new labels of
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v, w follow the condition I’(w) = I’ (v) + 1. Since by Observation 9.2 the labels never decreases in order for [(w) = [(v) + 1
the label of v must increase by at least 2.

Now starting from [(v) = 0 we have by Lemma 9.3.5 [(v) < 2n and for each saturating push along (v, w) the I(v)
increase by 2. Hence, at most n many saturating pushes occurred along (v, w). Now in the original graph since there are
m edges the total number of saturating pushes is < 2mn. ]

Now we will count the number of non-saturating pushes. For such pushes along any edge (v,u) the excess¢(v)
goes to 0. We define the potential function for a preflow f,

ofH)= > o

vz excessg () >0

Now @(f) > 0 for all preflow f and initially at the start of the algorithm ®(f°) = 0.

Lemma 9.3.8

For each non-saturating push ®(f) decreases by at least 1.

Proof: Suppose at any iteration i a non-saturating push occur along an edge (v, w). Therefore, [(w) = I(v) — 1. We will
show that ®(f7) < ®(f*~!) — 1. We have & = excessfi-1(v). Now if (0, w) is a forward edge then new flow along (v, w) is
fi(w,w) = f=' (v, w) + excessyi-1 (v). Since (v, w) € out(v)

excessyi(v) = Z fi(e) - Z fi(e) = Z fil(e) - Z fi7l(e) - fi(v,w) = excessfi-1(v) =6 =0
ecin(v) ecout(v) ecin(v) ecout(v)\{(o,w)}
Otherwise if (v, w) is a backward edge. Then ew flow along (w,0) is f'(w,v) = f=1(w,0) — excessyi-1(v). Since (w,0) €
in(v)
excessfi(v) = Z fi(e) - Z fi(e) = fi(w,0) + Z fi7l(e) - Z fi7l(e) =6+ excessfi-1(v) =0
ecin(v) ecout(v) ecin(v)\{(w,0)} ecout(v)

In both cases excessyi (v) = 0. Therefore, v goes out of the summation. Now there are two cases depending on the value of
excessfi-1(w)

e Case 1: If excesspi-i(w) > 0 ie. w had excess flow before push operation then ®(f~1) decreases by I(0v) i.e.
O(f1) = ®(f~1) = I(v). Since [(w) = [(v) — 1 and by Observation 9.2 [(v) > 1. Therefore, ®(f?) = ®(f1~1) —I(v) <
O(f 1) - 1.

o Case 2: If excesspi-1(w) = 0, then excessyi(w) = excesspi-1(w) +3 > 0 since § = excesspi-1(v) > 0 and Therefore,
O(f) =(f1) —1(v) +I(w) = @(f7") - 1

Hence, for both the cases ®(f?) < ®(f'~!) — 1. Therefore, ®(f~!) decreases by at least 1. [

Observation 9.5. For relabeling operation ®(f) increases by 1.

Since there are at most 2n? relabeling operations by Corollary 9.3.6, ®(f) increases by at most 2n? with relabeling
operations.

Observation 9.6. For each saturating push excessy (v, w) might not go to 0 and Therefore, ® might increase.

Now by Lemma 9.3.7 total number of saturated pushes is at most 2mn. And by Corollary 9.3.5 each vertex has label
at most 2n. Hence, in total ®(f) can increase at most 2mn x 2n = 4mn? by saturated pushes. Hence, ®(f) increases at
most 2n? + 2mn x 2m = O(mn?).

Now

#Non-saturating Pushes < Total decrease in ® < Total increase in ® < 2n* + 4mn® = O(mn?)

Therefore, total number of iterations of the WHILE loop is #Relabeling+#Saturated Push+#Non-saturated Push= 2n? +
2mn + O(mn?) = O(mn?). There fore the algorithm takes O(mn?) iteration. In each iteration it takes O(m + n) time.
Therefore, the runtime of the algorithm is O(mn?)O(n + m) = O(m?n?).
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Randomized Algorithm

Here we will study randomized algorithm for tow basic problems. Later we will discuss other randomized algorithms too
in the next chapters. We will also try to derandomize an algorithm in the next chapter.

10.1 Estimated Binary Search Tree Height

In this section we will calculate the expected height of a tree obtained by constructing a binary tree by picking elements
uniformly at random from a given array. For this we have the following simple INTERSECTION ALGORITHM

Algorithm 41: Simple Intersection Algorithm

Input: Array A of n elements of [n] in any order.
Output: Construct a binary tree from A

1 begin

2 S—A

3 T—0

4 while S # 0 do

5 u «— ExTRACT(S)

6 L Insert each element at the appropriate leaf of T
7 return T

Question 10.1

What is the expected height of the tree obtained by this SIMPLE INTERSECTION ALGORITHM assuming sequence of
keys is uniformly random permutation of [n].

Suppose X, be the random variable for the height of the tree obtained by the algorithm running on any permutation
of [n]. Let R, be the random variable for the root of the tree obtained by the algorithm. Now consider the random variable
Y, defined as Y,, = 2%#. Then, if we know R,, = i we have

Xn = 1+ max{Height of left subtree, Height of right subtree} = 1 + max{X;_; + X;,-;} = Y, = 2max{Y,_1, Y-i}

Now for the case of n = 1 Y1 = 1 since there is only one element and for the convenience we define Yy = 0. Now consider
the following indicator random variable Z, ; where

1 if i is first element
Zni =

0 otherwise

So basically Z,,; = 1{R,, = i}. Now if i is the first element then i the root of the tree obtained by the algorithm. Therefore
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we have
n
Yn = ZZn,i (1 +maX{Yi—1: Yn—i})
i=1

n
<2 Z Zni(Yie1 + Yo_t) [Using Lemma 10.1.1]
i=1

Lemma 10.1.1 Soft Max

For any a,b € R,
max{a, b} < log(2%+ 2b)

Therefore, we have

n

E[Y,] <2 ) B[ Zni (Ve + Yoi) |

i=1

= zzm[zn,i]IE[Yi_l + Y]

i=1

5 & 4 o]
= 2 BU v D] = 2 ) B
Now to compute [E[Y,,] we use the following lemma
Lemma 10.1.2
E[Y,] < }1(”;3)
Proof: We will prove this using induction on n. The base case is true for n = 0. Suppose this is true for 0,...,n— 1.

n-1 n-1
4 1 i+3) 1(n+3) 1 (n+3)! 1(n+3
<_ i — i ===
JE[Yn]_ni:OIE[Yz]— nZi_O( 3 ) n( 4 ) nal(n—1)! 4( 3 )

Hence by mathematical induction this is true for all n. ]

n+3

Hence, by the lemma we have E[Y,] < }1( 3

) = O(n®). Now by Jensen Inequality we have
E[Y,] = E[2%"] > 2E[Xx]

Therefore E[X,,] < O(logn). Therefore, the expected height of a binary search tree is O(log n).

10.2 Solving 2-SAT

In this section we will discuss a randomized algorithm for deciding if a n-variate 2-SAT boolean formula is satisfiable or
not.

2-SAT

Input: 2-SAT formula ¢ consisting of n variables.

Question: Given n-variate 2-SAT boolean formula determine if ¢ is satisfiable.

Here we give a simple randomized algorithm for solving the 2-SAT problem:
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Algorithm 42: 2-SAT Randomized Algorithm

Input: n variate 2-SAT formula ¢

Output: Decide if ¢ is satisfiable or not
1 begin
Vie[n],Setx;=0
while 3 clause C that is not satisfied do

Let x; and x; be variables in C
L Pick from {x;, x;} with equal probability and flip the assignment for that variable.

(3

return x

=)

Now if the algorithm terminates it terminates with a satisfying assignment. For now assume that ¢ is satisfiable.
We will deal with the case that ¢ is not satisfiable later.

Now since there are n variables there can be at most O(n?) many clauses can be in the formula. Therefore, for each
step of the while loop to occur it can at most take O(n?) time to find a clause which is not satisfied.

Let S represents the set of satisfying assignments for ¢. Let at j" iteration let A; denote the current assignment of
the variables. Let X; be the random variable which denotes maximum number of variables of A; that matches with some
satisfying assignment of S i.e.

X;=max{n—|x—-Aj|: x € S}

At any step if X; = n then the algorithm terminates since the algorithm has found a satisfying assignment. Now starting
with X; < n we consider how X evolves over time and how long it takes before X reaches n.

Now at each step we pick a clause which is unsatisfied. So we know A; and all assignments of S disagree on
the value of at least one variable of this clause. If all the assignments in S disagree with A; on both variables changing
either one will increase X;. If there are assignments in S which disagree on the value of one of the two variables then
with probability % we choose that variable and increase X; by 1 and with probability % we choose the other variable and
decrease X by 1.

Therefore, X; behaves like a random walk on a line starting from 0 which denotes the worst possible case and ends
once it reaches at n where at any nonzero point it goes up or down by 1 with probability % This is a Markov Chain.
We want to calculate how many steps does it take on average for X; to stumble all the way up to n. Before that we first
properly define our Markov Chain.

The Markov Chain consists states from 0 to n. Where from 0 it goes to 1 with probability 1 and from n it always
stays at n. And for any other state i it goes to i + 1 with probability % and goes to i — 1 with probability % Now let

T (k) = Expected time to walk from k to n

Then we have ( )T
i—1 i+1
+ (i+1) +1
2 2
Then we have n unknowns and n equations in the above system. Therefore, on average at most O(n?) steps needed to find
a solution.
Now at first we said we are assuming we are dealing with the case of there exists a solution.

T(m =0, T(0)=T(1)+1, Vie[n-1], T(i) =~

Question 10.2

How to deal with the issue of no solution?

In this case we will run for more number of iterations before we give up since when we give up we me might just
not have found the solution. So we will run the algorithm for 100n? steps. And if no solution was found then we will give
up.

We first of all divide the execution of the algorithm into segments of 2n? steps each. We will calculate the failure
case of each segment. If the 2-SAT formula has no solution then the algorithm gives correct output. Suppose it has a
solution. Then by Markov’s Inequality the probability of number of steps needed to find the solution is greater than the
expected number of steps needed to find a solution is at most % Now after total 100n? steps the probability none of the
segments found a solution is 27,
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Derandomization

In this section we will see a derandomization technique called Conditional Expectation. With this technique we will show
derandomization of some randomized algorithms in the following sections.

11.1 Conditional Expectation

Let o7 be a randomized algorithm which is successful with probability at least % Suppose .2/ uses m random bits and
suppose the random bits are Ry, ..., Ry,. Then we have

P [<(x,Ry,...,Ry) = Correct] >
RipoRom

[SSR NS

We want to derandomize 7.

Now think of &7 as a binary tree which, given x, branches on the sampled value of each random bit R; where it
goes to left child if the random bit takes value 0 and goes to right child if the random bit takes value 1. Every path in this
tree from root to leaf corresponds to different possible random strings and the leaf nodes corresponds to the output of the
algorithm with the corresponding random string. Since ./ succeeds with probability at least % means that at least % of
the leaves are good outputs for the input x.

Idea. To derandomize of we need to find a deterministic algorithm that traverses from the root to a leaf which at any branch
at level i chooses a direction which leads to a good output.

Now suppose ry,...,rm € {0,1} denote the values taken by the random variables Ry, ..., Ry,. Now let P(rq,...,r;)
denote the fraction of the leaves of the subtree below the node obtained by following the path ry,. .., r;. Formally,

1 1
P(ri,...,r;)) =P[(x,Ry,....,Rm) |Ri=r1,...,Ri =r1i] = EP(rl,...,ri,O)+§P(r1,...,ri, 1)

From the last equality it is clear that there is a choice r;y; such that P(ry,...,ri41) = P(r1,...,r;). Therefore to find a good
path in the tree it suffices at each branch to pick such an r € {0, 1}. Then we would have

2
P(ri,....rm) 2 P(ry,...,rm—1) = -+- =2 P(r;) 2 P[(x,Ry,...,Ry) = Correct] > 3
Since P(ry,...,ry) is either 0 or 1 it must be 1.
11.2 Max-SAT
Max-SAT
Input: SAT formula ¢ with n variables and m clauses and non negative weights w, on clauses.

Question: Given a SAT formula ¢ with n variables and m clauses and non negative weights w, on clauses find
an assignment that maximizes weight of satisfied clauses.

We will first show a randomized algorithm for this problem. Then we will use conditional expectation to deran-
domize the algorithm.
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11.2.1 Randomized Algorithm

First lets see what is the expected weight of satisfied clauses. Let Y. be the indicator random variable if clause C is satisfied.
Suppose there are k variables in C. Then we have E[Y.] =1 — zlk > 1 Therefore expected weight of satisfied clauses is

2
ZWCYC = ZWCIE[YC] 2 %ZWC
C C C

Let OPT be the optimal MAx-SAT solution for the given formula. Then we have }} w, > OPT. Therefore
C

E

E

1
> -0OPT
2

Z we Y,
C

Hence we have the following randomized algorithm:

Algorithm 43: 2-APPROXIMATE MAX-SAT

Input: SAT formula ¢ with n variables and m clauses and non negative weights w, on clauses.
Output: Find an assignment that maximizes weight of satisfied clauses.

1 begin

2 fori € [n] do

3 L x; «— Pick a value from {0, 1} uniformly at random
4 return x

By the above discussion we have an assignment with an expected weight of satisfied clauses at least half the
maximum.

11.2.2 Derandomization

Now we want to derandomize the algorithm using conditional expectation. Let Xj, ..., X, denote the random variable
for each variables and xy,...,x, € {0,1} denote the value the random variables took. A key step will be evaluate the
conditional probabilities:

E ZWCYC |X1:x1,...,Xl-=x,- :ZWCIP[YC=1|X1:X1,...,Xizxi] Vie [Tl]
c C

Hence we have to find the value of P[Y, =1 | X; = x1,...,X; = x;], Vi € [n]. Now if the clause C is already satisfied by

the setting x1, ..., x; then Yc = 1. Else if C has r variables from x;4, ..., x, then
1
IP[YCII |X1 =x1,...,X,~=xi] =1_2_r

.Now if at height i, we find E [} c w.Ye | X1 = x1,...,X; =0] and E [Y - weYe | X5 = x1,...,X; = 1] and which ever gives
the higher value we will set the assignment for X; to be that one. Thus we can derandomize the algorithm.

11.3 Set Balancing

SET-BALANCE

Input: A € {0,1}™" matrix with A; is the i"" row of A and A; ; is the (i, j)** entry

Question: Given n X n, 0-1 matrix A find b € {1, —1}" to minimize ||Ab||c = m[a)i |A;b|.
i€ln

In the following sections we will not optimize on ||Ab||«. Instead we will give bound on how large min ||Ab||. can
be for any A.
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Algorithm 44: SET-BALANCING
Input: A € {0, 1}"™" matrix
Output: Find an b € {1, —1}" to minimize ||Ab||c

1 begin

2 fori € [n] do

3 L x; «— Pick a value from {1, —1} uniformly at random
4 return x

11.3.1 Randomized Algorithm

Clearly for each row i € [n] we have

ZAUb Z [Aib)] =

But that does not mean [E[|A;b|] = 0. To get a bound on [E[|A;b|] we will use Hoeffding’s Inequality

Theorem 11.3.1 Hoeffding’s Inequality

n
Let Y1,...,Y, be independent random variables with bounded supposer [/;, u;] for ¥; and let Y = }| Y;. Then for
i=1
any 6 > 0
_ 2%
% (ui—1;)?
P[lY-E[Y]]| > 6] < 2e 7

In our case we have Y; j = A; jb; and Y; = 3 A; jb;. Theneach Y;; € {-1,0,1}, E[Y ;] = 0 and E[Y;] = 0. Therefore
J

2
P[|Y;| > 8] < 2¢

Now we choose § = 2Vnlnn
2
IP[|A;b| = 2Vnlnn] —2

Therefore P[||Ab||o > 2Vnlnn] < % by union bound. Hence choosing each entry b uniformly at random from +1 we can
obtain [|Ab||« < 2Vnlnn with high probability.

11.3.2 Derandomization

Again we will use conditional expectation to derandomize the algorithm. Let a node at height j corresponds to a setting
of by,...,b; and we will calculate IP[||Ab|lcoc > 2Vnlnn | by,...,b;]. Now consider a leaf corresponding to some choice

of by, ..., b, such that the value of the leaf is < 1. But there is no randomness at the leaf. Then P[||Ab|lcc > 2Vnlnn |
bi,...,by] = 0. Hence for this choice of by, . .., b, it must have ||Ab||c < 2Vnlnn. Now

P[||Ab||c > 2Vnlnn | by,...,b;] = P[||Abll > 2Vnlnn | by,...,b;,0] + P[||Abll > 2Vnlnn | by,...,bj,1]

One of them have

P[||Ablle > 2Vnlnn | by,...,bj,bjx] < P[||Ablle > 2Vnlnn | by, ..., b;]

So we choose that one. Also note that at the root IP[||Ab||c > 2Vnlnn] < % Then for choosing such a path for the

corresponding choice of b we will have ||Ab||ooc < M = 2VnlInn. But this depends on being able to calculate IP[||Ab||c >
M| by,...,b;] which we don’t know how to do in polynomial time. Instead we will use pessimistic estimator which.
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11.3.3 Using Pessimistic Estimator to Derandomize

Instead of IP[||Abl|e > M | by,...,b;] we willuse 3. P[|A;b| > M| by,...,b;]. Naturally we have

i€[n]
Z IP[|Aib] > M | by,...,b;] = P[||Ablle > M | by, ..., b;]
i€[n]

Now we know how to calculate IP[|A;b| > M | by,...,b;]. For any i € [n] we have

n
]P[|A,b| >M|b1,...,bj] = Z ]P[Aib:klbl,...,bj]-f-]P[Aib:—k | bl,...,bj]
k=M+1

Let S; = {], > Ai,j’ = 1} and [ = Z Ai,j’~ Then
J'=j

P[Ab =k |by,...,b;] =T

Zb,:k—ll

J'€S;

Let in S; n; coordinates of b are 1 and rest of the coordinates of b in S; are —1. Then

1
ij/:Zni—|S,-|=k—l:>niz—(k_l+|5i|)
Jj'€S; 2

Therefore we have

1 IS ]
P[Aib=k|b1,...,bj]:+( )
2150\ 2 (k= 1+S:])
Thus we can calculate P[A;b = k | by,...,b;] foralln > |k| > M. Therefore we can calculate P[|A;b] > M | by,...,b;] and
henceforth 3 IP[|A;b| > M | by,...,b;]. With this pessimistic estimator we calculate at height j both 3 P[|A;b] >

i€[n] ie[n]
M| by,....,bj,bj;1 =0] and 3 P[|A;b| > M | by,...,bj,bjs1 = 1] and the one which have value less than 1 we will

i€[n]

follow that path and eventually we will get an assignment of b for which ||Ab||. < 2Vnlnn.



CHAPTER 12 -

Global Min Cut

GrosaL MIN CuT
Input: Undirected graph G = (V, E)
Question: Find cut (S, V \ S) that minimizes |6(S)| where §(S) = {e = (v,0) | u € S,v ¢ S}.

12.1 Naive Algorithm

In previous chapter we have seen the algorithm to find s — t min cut given any s,t € V in O(n?y/m) time. So naively we
can run over all possible vertex pairs (s, t) and output the global min cut in O(n*+/m) time.

Or we can fix a vertex s € V and then for all t+ € V we can find the s — ¢ min cut and output the minimum. This
takes O(n3+/m) time.

12.2 Karger’s GMC Algorithm

Instead of naively solving the problem like above we will use randomization and will construct an algorithm which will
output a global min-cut with high probability using edge contraction.

Definition 12.2.1: Edge Constraction

Given a graph G = (V,E), e = (u,v) edge contraction gives a multigraph (graph with multiple edges between two
vertices but no self-loops) G\ e = (V',E’) where V' =V \ {u,0} U{v.} and for alle’ € Eifene’ =0 thene’ € E
and otherwise e/ = (w, u) then (w,v,) € E’. The vertex v, is called the supernode.

b b
d
f .S
a = a de
C Cc
e

Observation. For any edgee € G:

« Any cut in G\ e is also a cut in G of same size.
« Size of min cut in G\ e is at least the size of min cut in G.
« Any cut in G that does not separate vertices of e is also cut in G \ e.

Then we have the following lemma:
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Lemma 12.2.1

Say k is the size of global min cut in G = (V’,E’) [G possible a multigraph] i.e. 3 S € V’ such that |5(S)| = k.
Then min{deg(v) | v € V'} > k and |E’| > %IV’l.

Proof: If any vertex v € V' has degree less than k then we can take the cut ({0}, V' \ {0}) then |6(v)| < k, but that

contradicts the fact that size of global min cut is k. Hence, contradiction ¢ Therefore V v € V’, deg(v) > k. Therefore,

|E'| =1 % deg(v) > 5 - |v'|. n
veV’

So we at each round we will pick an edge from the graph uniformly at random and then contract that edge and in
the next round we will pick an edge from the contracted graph. We will do n — 2 such iterations since after that we are
left with 2 supernodes (X, V \ X).

Algorithm 45: Karger’s GMC Algorithm
Input: Undirected graph G = (V,E)
Output: Find a cut (S, V' \ S) such that |§(S)| is minimum

1 begin

2 H «— G;

3 fori=1,...,n—2do

4 e «—Picked uniformly at random from E;
5 L H«— H\e;

return E(H)

=)}

Question 12.1

What is the probability that the above algorithm returns a global min cut?

Let (S,V'\ S) is the global min cut with |5(S)| = k. Now probability that the algorithm returns (S, V' \ S) is equal
to the probability that none of the edges in (S) is picked. So let ey, ..., e,_, are the edges that are picked in the n — 2
iterations of the algorithm. We need to calculate P[e; ¢ 6(S), Vi € [n—2]]

Lemma 12.2.2
Ple; ¢ 5(S)] >1-2

Proof: We have |5(S)| = k. Hence, we have |E| > "Z—k Since e, is picked uniformly at random we have

k 2
Ple; ¢6(S)]>21-—=1-——
nk n
2
Hence we have the lemma. [ ]
Lemma 12.2.3
Ple; ¢ 5(S) | er,....e-1 €8(S)] > 1- =
Proof: Letey,...,ei—1 ¢ O(S). Hence S is still a min cut in G \ {es, ..., e;_1}. Then number of edges after contracting
s k(n—i+1)
e, ...,ei—1 is at least =————. Therefore
k 2

Ple; ¢ 5(S) | er,...,ei—1 € 5(S)]1 -

=1-
k(n—i+1) n—i+1
2

Therefore we have the lemma. [ ]
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Hence we have

IP[Success] = P[e; € 5(S), Vi€ [n—2]]

HZ( )
i n—i+1

2 1 1
:n(n—l) :@:O(F)

So we run the above algorithm 2n? log n times then take the cut which gives minimum size. Then we have

IP[Succeeds] = 1 — IP[All 4n® log n runs fails]

\Y%
—_
|
I
—
|
[ oo
S —
'
S
o
o
['F}
3

Hence, this gives a much higher probability of success. So our final algorithm is

Algorithm 46: Multiple run of Karger’s GMC Algorithm
Input: Undirected graph G = (V, E)
Output: Find a cut (S, V' \ S) such that |§(S)| is minimum

1 begin

2 S «— 0,

3 cutEdgeSize «— |E|;

a | forie [2n?logn] do

5 H «— G;

6 forj=1,...,n-2do

7 e «—Picked uniformly at random from E;
8 H«— H\eg;

9 if |E(H)| < cutEdgeSize then
10 Let H = (X,V\ X);

11 S — X;

12 cutEdgeSize «— |E(H)|;
13 return S

12.3 Karger-Stein Algorithm

In Karger’s algorithm the probability of getting a min cut is low because in later stages the probability of picking an edge
from a min-cut is high because

2 (")
1 = Pley,...,e; € 5(5)] = (Z)

If the above probability is at least % then2(n—i)22n* = n-i> \f Hence, i can’t be too high.

Ple; € 6(S) | e1,...,ei-1 €6(5)] <

So instead of running the entire algorithm O(n?) times we can just run the later stages multiple times. So after
i<n- % — 1 iterations of Karger’s GMC algorithm we have

Pley,...,e; € 5(S)] =

(n—i)(n—i—1)> n? >1
n(n-1) “2n(n-1) — 2
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from Lemma 12.2.3. We also have the following lemma:

Lemma 12.3.1
Forany 1 <i < j < n—2 we have

|5 (===

Ple;, €is1,--.,€; € 5(S) | er,...,ei-1 € 5(S)] 2 =i+ D=1)

Now fixani < n-2. Letl=n—i+1.ThenFoern—\i/é—lwehave

I 1
I[’[ei,...,eHj_l o2 5(5) | €1,...,€i—1 ¢ 5(5)] > m > 5

So we have the following algorithm:

Algorithm 47: KS-Algorithm
Input: Undirected graph G = (V, E)
Output: Find a cut (S, V '\ S) such that |5(S)| is minimum

1 begin
2 if |V| = 2 then
3 L return Any vertex of V

4 Run Karger’s GMC Algorithm on H for n — \/% — 1 iterations.;

Let H be the resulting multigraph.;
S, «— KS-Arcoritam(H);

S, «— KS-ArcorituMm(H);
return arg min{|S;|: i € [2]}

e N & W

Let p(n) the probability of success for KS-Algorithm for a graph with n vertices. Then probability of not picking
an edge until % + 1 nodes remain is > % as we have calculated above. Now the resulting graph has 12 + 1 nodes. Hence,

\/’

probability that KS-ArcoriTHM(H) returns the min-cut is at least %p (\% + 1). Therefore,

2
1
IP[At least one of the run KS-ArLcoriTaM(H) returns the min cut] > 1 — (1 - Ep (i + 1))

V2

Therefore we have

p(n)zl—(l—lp(i+1))
2P\

Hence, to succeed with high probability we need to run 2log®n

Solving this recursion relation we have p(n) >
times.
Now For each run of the KS-Algorithm we have the recursion relation

1
logn-

T(n) > 2T (% + 1) +0(n?)

Solving the recursion relation we have T(n) = O(n?logn). Therefore, the time complexity of the total running time is
O(n?log® n).
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Matching

In section 5.1 we saw how to find a maximal matching in a graph using matroids. Here we will try to find maximum
matching.

MAaxiMuM MATCHING
Input: Graph G = (V,E)
Question: Find a maximum matching M C E of G

First we will solve finding maximum matching in bipartite graphs first. Then we will extend the algorithm to
general graphs.

13.1 Bipartite Matching

So in this section we will study the following problem:

BIPARTITE MAXIMUM MATCHING
Input: Graph G = (LUR,E)
Question: Find a maximum matching M C E of G

13.1.1 Using Max Flow

One approach to find a maximum matching is by using max-flow algorithm. For this we introduce 2 new vertices s and
t where there is an edge from s to every vertex in L and there is an edge from every vertex in R to t and all edges have
capacity 1. Then the max-flow for this directed graph is the maximum matching of the bipartite graph. So we have the
algorithm:

Lemma 13.1.1

There exists a max-flow of value k in the modified graph G’ = (V, E’) if and only there is a matching of size k

Proof: Suppose G’ has a matching M of size k. Let M = {(u;,v;): i € [k]} where u; € L and v; € Rfor all i € [k]. Then
we have the flow f, f(s,u;) = f(u;,0;) = f(v;,t) = 1 for all i € [k]. This flow has value k.

Now suppose there is a flow f of value k. Since each edge has capacity 1 then either an edge has flow 1 or it has
0 flow. Since value of flow is k there are exactly k edges outgoing from s with positive flow. Let the edges are (s, u;) for
i € [k]. Now from each u; there is exactly one edge going out which has positive flow. Now if 3i # j € [k] such that
Jov € R, f(u;,v) = (uj,0) = 1then f(v,t) = 2 but ¢,; = 1. So this is not possible. Therefore, the edges going out from
each u; goes to distinct vertices. These edges now form a matching of size k. [ ]

Therefore, the algorithm successfully returns a maximum matching of the bipartite graph. But we don’t know any
algorithm for finding maximum matching in general graphs using max-flow. In the next algorithm we will use something
called Augmenting paths to find a maximum matching which we will extend to general graphs.
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Algorithm 48: BP-Max-MATCHING-FLow

Input: G = (L UR, E) bipartite graph
Output: Find a maximum matching

1 begin
V «— AUBU {s,t}
E «—E
forv € L do

L E «— E'U{(s,0)}
forv € Rdo

L E «— E U{(v,1)}
8 fore € E' do
9 L Ce — 1

10 f «— EpmoNDs-Karp(G’ = (V,E'),{c.: e € E'})
11 return {e: f(e) > 0,e € E}

g W N

N S

13.1.2 Using Augmenting Paths

appear alternatively.

Definition 13.1.1: M-Alternating Path and Augmenting Path

In a graph G = (V, E) and M be a matching in G. Then an M-alternating path is where the edges from M and E \ M

An M-alternating path between two unmatched (also called exposed) vertices is called an augmenting path.

Given a matching M and if there exists an augmenting path p then we can obtain a larger matching M’ just by
taking the edges in p not in M. Now suppose we are given a bipartite graph G = (L UR, E). Let M is a matching in G.
Suppose M is a maximum matching. If there exists an augmenting path p then we can obtain a larger matching just by
taking the edges in p not in M. This contradicts with M is maximum matching. Hence, there are no augmenting paths.

Now we will show that given G and M which is not maximum then we can find an augmenting path with an
algorithm. Since M is not maximum there is a vertex v which is not matched

Algorithm 50: AUTREE(Q)

Algorithm 49: FIND-AUGMENTING-PATH(G, v)

Input: G = (L UR, E) bipartite graph, matching M
(not maximum) and an exposed vertex v
Output: Find an augmenting path starting from v
1 begin
v.mark «— even
foru e LUR\ {v} do
L u.mark «— NULL

QUEUE Q // For BFS
ENQUEUE(Q, v)
while Q not empty do

L AUTREE(Q)

9 return FAIL

T

e N & W

1 u «— DEQUEUE(Q)
2 if u.mark == even then

3

N G e

for (u,w) € E\ M do

if w.mark == NuLL then
ENQUEUE(Q, w)
w.mark «— odd
w.p — u

8 if u.mark == odd then

9
10
11
12

13
14

if 3 (u,w) € M and w.mark == NuLL then
w.mark «— even
wp —u
ENQUEUE(Q, w)

else
L Print “v ~» u augmenting path found”
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The above algorithm in each iteration checks if the new vertex has mark NuLL before adding to the queue. Because
of this we are not adding same vertex more than one into the queue and if we follow the parent and child pointers, this
forms a tree. We call this tree to be an M-alternating tree. Denote the tree by T.

UO————Q—O

The algorithm may not visit all the vertices in L U R in the tree. For example in case of the
graph at left the algorithm will not find the vertex

|
|
oX

Since the algorithm runs a BFS if there was an edge between two vertices at levels separated by 2 we would have
explored that vertex earlier. So our first observation is:

Observation 13.1. In the tree T there are no edges between vertices at levels separated by 2.
Observation 13.2. All even vertices except v are matched in T.

Observation 13.3. There are no edges between two odd levels or even levels.

Lemma 13.1.2

If leaf u is odd there is a v ~» u augmenting path.

Proof: 1If the odd vertex u is unmatched then clearly there is a v ~» u augmenting path. So let’s assume u is matched.
Say (u,w) € M. If wis not in T then u can not be a leaf as the algorithm will take the edge (u, w) € M for next iteration.

So suppose w is in T. Then w.mark = even since otherwise we would have taken then (w,u) edge in T before. But
by Observation 13.2 all the even vertices except v are matched in the tree already. So u can not be matched with w ]

Now from the tree T we partition the vertices of T into the even marked vertices and odd marked vertices. So let
Ly =LNT and Rr = RN T. Therefore, L7 is the set of even marked vertices and Ry is the set of odd marked vertices.

Lemma 13.1.3
N(L7) =Ry

Proof: Vertices in Lt are even vertices from which we explore all the edges not in M. Also, all the even vertices except
v are matched. So except v for all the vertices in Ly their parent is the matched vertex. Hence, for all even vertices except
v all the neighbors are in Rr. Since v is exposed v has no matched neighbor. So all the neighbors of v are also in Rr.
Therefore, N(L7) = Ry. [
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Lemma 13.1.4

Suppose we start the algorithm from an exposed vertex v. Suppose there is no augmenting path from v and let the
tree formed by the algorithm is T. Then |Lr| = |Rr| + 1.

Proof:  Since there is no augmenting path the graph all the leaves of T are even vertices. Otherwise, the leaves are odd
vertices and then all of them have to be matched. If not then there will exists an augmenting path. Therefore, all the leaves
of T are even vertices. Now since the vertices in Ly are even vertices and all even vertices except v are matched to unique
odd vertex in Ry we have |Lt| = |Rr| + 1. [

Now suppose M is a matching. Let L’ = {0y, ...,0x} C L are unmatched vertices. Therefore, |[M| = |L| — k. Then
consider the following algorithm:

+ Let T} be M-alternating tree from v; by FIND-AUGMENTING-PATH(G, v1). L7, Ry, are vertices of T;.
+ Let T; be M-alternating tree from v, by FIND-AUGMENTING-PATH(G \ T3, ;). L7,, Ry, are vertices of T5.

+ Let T; be M-alternating tree from v;3 by FIND-AUGMENTING-PATH(G \ (T1 U T3), v3). L7, Ry, are vertices of Ts. - - -
k-1
« Let T; be M-alternating tree from vy by FIND-AUGMENTING-PATH(G \ (i:1 T,-) ,vk). Ly, Ry, are vertices of Tg.
Observation 13.4. v; is not in T; for any j < i because otherwise we would have found an augmenting path in T;.
Now L, for all i € [k] are disjoint and Ry, for all i € [k] are disjoint. If G had no augmenting path from v; for all
i € [k] then there are no augmenting paths in G \ (L]Jl Tl-) for all j € [k —1] from v;,,. Therefore, by Lemma 13.1.4 we
iz

have |Ly,| = |Ry;| + 1V i € [k]. Hence, we have

k K
Dolgl = > (Rl +1) =
i=1 i=1

Now by Lemma 13.1.3, N(Lt;,,) = Rr;,, forall j € [k - 1] in G\ (

+k

k
s
i=1

T,-). Hence,

k
i
i=1

J

1

N(Ly,) € URE = N(ULTi

i=1 i=1

k
= U Ry,
i=1

k
+ k. Therefore, any matching of | J Ly, must leave at least k vertices unmatched. Now all the vertices
i=1

k
U Rr,

i=1

But

k
U Lz,
i=1

i=1
Since M is a matching such that exactly k vertices are unmatched. M is a maximum matching. Therefore, if there is no
augmenting path in G then M is a maximum matching.

We also showed before that if M is a maximum matching then there is no augmenting path in G. Therefore, we
have the following theorem:

k k
inL\ (U LTI.) with R\ (U RTI.) and vice versa. Therefore, any matching of L must leave at least k vertices unmatched.
i=1

Theorem 13.1.5 Berge’s Theorem

A matching M is maximum if and only if there are no augmenting paths in G.

Therefore, if we start with any matching and each time we find an augmenting path we update the matching by
taking the odd edges in the augmenting path and obtain a larger matching. After continuously doing this once when there
is no augmenting path we can conclude that we obtained a maximum matching.

Since every time the size of the maximal matching is increased by at least 1. The total number of iterations the
algorithm takes to output the maximal matching is O(n) where n is the number of vertices in G. In each iteration it calls
the FIND-AUGMENTING-PATH algorithm which takes the time same as time taken in BFS. Hence, FIND-AUGMENTING-PATH
takes O(m + n) time. Therefore, the BP-MAXIMUM-MATCHING algorithm takes O(n(n + m)) time.
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Algorithm 51: BP-MaxiMuM-MATCHING(G)
Input: G = (L UR, E) bipartite graph
Output: Find a maximum matching

1 begin
2 M— 0
3 while True do
4 v «— unmatched vertex
5 p «— FIND-AUGMENTING-PATH
6 if p == Fam then
7 L return M
8 fore € pdo
if e € M then
10 L M «— M\ {e}
11 else
12 L M — MU {e}

13.1.3 Using Matrix Scaling

Here we will show a new algorithm for deciding if a bipartite graph has a perfect matching using matrix scaling. The
paper which we will follow is [LSW98]

BIPARTITE PERFECT MATCHING
Input: Graph G = (LUR,E)
Question: Decide if G has a perfect matching or not.

Suppose G = (L UR, E) a bipartite graph. If bipartite adjacency matrix of the graph G is A then the permanent of

the matrix A,
n
per(A) = Z l_lxi,o(i)

o€S, i=1
counts the number of perfect matchings in G. So we want to check if for a given bipartite graph (L UR, E), per(A) > 0 or

not where A is the bipartite adjacency matrix. Now there is a necessary and sufficient condition for existence of perfect
matching in a bipartite graph which is called Hall’s condition.

Theorem 13.1.6 Hall’s Condition

A bipartite graph G = (L UR, E) has an L-perfect matching if and only if V S C L, |S| < [N(S)| where N(S) = {v €
R:3Juel, (uv) € E}

Proof: Now if G has an L-perfect matching then for every S C L, S is matched with some T C R such that |S| = |T|.
Therefore, T € N(S) = |S| =|T| < |IN(9)|.

Now we will prove the opposite direction. Suppose for all S € L we have |S| < |[N(S)|. Assume there is no L-perfect
matching in G. Let M be a maximum L-matching in G. Let u € L is unmatched. Now consider the following sets:

X = {x € L: 3 M-alternating path from u to x}, Y = {y € R: 3 M-alternating path from u to y}

Now notice that N(X) C Y. Since in a M-alternating path from u whenever the odd edges are not matching edges and the
even edges are matching edges. So in the odd edges we can pick any neighbor except the one it is matched with and the
immediate even edge before that connects that vertex with the vertex in R it is matched with. Hence, we have N(X) C Y.

Now it suffices to prove that |X| > |Y|. Now let y € Y. Suppose u ~» x’ — y be the M-alternating path. If y is
not matched then we could increase the matching by taking the odd edges of the path and thus obtain a matching with
larger size than M. But M is maximum matching. Hence, y is matched. Therefore, we can extend the path by taking the
matching edge incident on y and go the vertex x”’ € L i.e. the new M-alternating path becomes u ~» x” — y — x” to
have an M-alternating path u ~» x”’. So |X| > |Y].

Therefore, we obtained a set of vertices X C Y such that |X| > |Y| > N(X)|. This contradicts the assumption.
Hence, contradiction. Therefore, G has an L-perfect matching. ]
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We will use hall’s condition on the adjacency matrix to check if per(A) is positive or not. Now multiplying a row
or a column of a matrix by some constant c also multiplies the permanent of the matrix by c as well. In fact if d;, d; € R”
and D; = diag(d;) and D; = diag(D;) then per(D1AD;) = (H dli) (H dz,—) per(A). So we can scale our original matrix A
i=1 i=1
to obtain a different matrix B and from B we can approximate per(A) by approximating per(B). A natural strategy is to
seek an efficient algorithm for scaling A to a doubly stochastic B.

Definition 13.1.2: Doubly Stochastic Matrix

A matrix M € R™*™ is doubly stochastic if entries are non-negative and each row and column sum to 1.

First we will show that Hall’s Condition holds for doubly stochastic matrix. First let’s see what it means for a
matrix to satisfy hall’s condition. A matrix with all entries non-negative holds Hall’s Condition if for all S € [n] if
T={ie[n]:3j€S, A(ij) # 0} then |T| > |S|. This also corresponds to the bipartite adjacency matrix satisfying the
hall’s condition since for any set of rows S the number of columns for which in the S rows at least one entry is non-zero
should be greater than or equal to |S|.

Lemma 13.1.7
Hall’s Condition holds for doubly stochastic matrix.

Proof: Let M be the doubly stochastic matrix. Let S € [n]. So consider the |S| X n matrix which only consists of the
rows in S. Call this matrix Mg. Now suppose T be the set of columns in Mg which has nonzero entries. Now consider the
n x |T| matrix which only consists of the columns in T. Call this matrix M7. Now since M is doubly stochastic we know
sum of entries of Mg is |S| and sum of entries of M. is |T|. Our goal is to show |S| < |T|. Now since T is the only set
of columns which have nonzero columns in M{ the elements which contributes to the sum of entries in Mg are in the T
columns in Mg. Since these elements are also present in M7 we have |T| > [S]. [

Hence, for doubly stochastic matrices the permanent is positive. Now not all matrices are doubly stochastic. And
in fact matrices with permanent zero will not be doubly stochastic, so no amount of scaling will make it doubly stochastic.
So we will settle for approximately doubly stochastic matrix. In order to make a matrix doubly stochastic first for each
row we will divide the row with their row some. Now it becomes row stochastic. Then if it’s not approximately doubly
stochastic for each column we will divide the column entries with their column sum. But first what e-approximate doubly
stochastic matrix means.

Definition 13.1.3: e-Approximate Doubly Stochastic Matrix

A matrix is e—approximate doubly stochastic if for each column, the column sum is in (1 — €, 1+ €) and for each
row, the row sum isin (1 —¢,1+¢)

Now we will show that even for e-approximate doubly stochastic matrix the hall’s condition holds.

Lemma 13.1.8

Halls’s Condition holds for e-approximate doubly stochastic matrix for e < -

10n

Proof: Let M is e—approximate doubly stochastic matrix. Let S C [n]. So consider the |S| X n matrix which only consists
of the rows in S. Call this matrix M. Now suppose T be the set of columns in Mg which has nonzero entries. Now consider
the n X |T| matrix which only consists of the columns in T. Call this matrix Mj.. Now the sum of entries in M is > |S|(1 —¢)
and sum of entries in M. is < |T|(1 - €). Now since T is the only set of columns which have nonzero columns in M the
elements which contributes to the sum of entries in Mg are in the T columns in Mg. Since these elements are also present
in M. we have ||T|(1+¢€) > |S|(1 — €). Therefore we have

€ 2e 1 1
|T| = |S| =S| (1——) > |S|(1-2¢) > |S| (1——) > |S| (1——) > |S| -1
€ 1+¢

1-
1+ 5n |S|

Since T is an integer we have |T| > |S|. Hence the Hall’s condition holds. [
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Therefore, permanent of e-approximate doubly stochastic matrix is also positive. Hence, our algorithm for bipartite
perfect matching is:

Algorithm 52: BP-MATRIX-SCALING

Input: Bipartite adjacency matrix A of G = (LUR,E)
Output: Decide if G has a perfect matching.
1 begin

2 while True do

3 A «— Scale every row of A to make it row stochastic.

4 if All column-sums are in (1 —¢,1+¢) then

5 L return Yes
A «— Scale every column of A to make it column stochastic.
if All row-sums are in (1 —¢,1+¢) then

8 L return Yes

In both if conditions we are checking if the matrix is e—approximate doubly stochastic matrix. The moment it
becomes a e—approximate doubly stochastic matrix we are done.

Now if G doesn’t have a perfect matching then we will never reach a e-approximate doubly stochastic matrix since
otherwise Hall’s condition will hold, and then we will have that the permanent is positive. So if G doesn’t have a perfect
matching the algorithm will run in an infinite loop. We only need to check if G has a perfect matching the algorithm
returns Yes.

We will now define a potential function ®: Z, — R,. Let o € S, such that a; 5(;) # 0 for alli € [n]. Now if an
entry of the matrix is nonzero then it is always nonzero since all the entries are non-negative. Now since the scalings are

n
symmetric we will define the potential function for i** scaling (row/column) is ®(i) = [] i (). So we have ®(0) = 1
i=1

since at first all the entries of the matrix are from {0, 1}. Also, we know ®(¢) < 1 for all ¢ since every time we are scaling
the matrix. Now ®(1) > nl—,, since every row-sum can be at most n so it will be divided by n and therefore a; 5(;) > %
for all i € [n]. Now to show the while loop stops if G has a perfect matching it suffices to show that ®(#) increases by a

multiplicative factor. So we have the following lemma.

Lemma 13.1.9
For all t, (¢ + 1) > ®(t)(1 + «) for some « € (0, 1).

Proof: Let A’ denote the matrix at the ' scaling where the (¢ — 1)** scaling was column-scaling. Let A” denote the
matrix after row-scaling. Now since we went to the next iteration not all column-sums are in (1 — ¢, 1 + €) after scaling
the rows. Now the row sums of A" are 1. Therefore we have

n n n n

n >, Col-sum;(A"") >, Row-sum;(A”")

= | | cobsumia”) < | =—— ol =1 = (1) < d(t+1)
i=1

o(t)
O(t+1)

Similarly we can say the same if (¢t — 1)** scaling was row-scaling. Since not all column-sums are in (1 — ¢, 1 +€) we have

n
> (Col-sum;(A”") — 1)? > €2. Therefore using Lemma 13.1.10 we have
i=1
d(t 2 2
O N YU N L P
O(t+1) 2 2

Therefore we have the lemma. [ |

We have € < ﬁ. Therefore, if t > 200n* then we have

1 1\ 1
12d(t) > — 1+ > —e" >1
n" 200n? nn
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Hence the while loop will iterate for at most 200n? iterations. Hence, this algorithm takes O(n*) time. Hence, if G has a
perfect matching the algorithm runs for at most O(n?) iterations. And if G doesn’t have a perfect matching then the loop
never stops. So we have the new modified algorithm to prevent infinite looping:

Algorithm 53: BP-MATRIX-SCALING

Input: Bipartite adjacency matrix A of G = (LUR,E)
Output: Decide if G has a perfect matching.

1 begin

2 € — ﬁ

3 for i € [200n*] do

4 A «— Scale every row of A to make it row stochastic.
5 if All column-sums are in (1 —¢€,1+¢) then

6 L return Yes

A «— Scale every column of A to make it column stochastic.
8 if All row-sums are in (1 —¢€,1+¢) then
9 L return Yes

We will prove the helping lemma needed to prove Lemma 13.1.9.

Lemma 13.1.10
n n n

Suppose x1,...,x, > 0and > x; =nand Y (1—x;)2 > 8. Then [[ x; < 1—g+0(5).
i=1 i=1 i=1

Proof: Denote p; = x; — 1. So Z pi =0and Z p? > 8. Now

i=1

3 2 3
p, Pi PP P

- 1,0} — log(1+pi)§p,—?+ ;= L4p < el

log(1+py) —Z( 1

Therefore we have

2

ﬂxqup Z 2 iy

i=1

)
< exp 0—§+— = exp —§+—

S
<1--— 1)
3 3 2+0()

Therefore we have the lemma. [ ]

There is also a survey, [Ide16] on use of matrix scaling in different results.

13.2 Matching in General Graphs

Here we give a similar algorithm' for finding maximum matching in general graph as in the case of bipartite graphs in
subsection 13.1.2. We will give a similar characterization for the maximum matching in general graphs. First we will show
an extension of Berge’s lemma to general graphs.

Theorem 13.2.1 Berge’s Lemma

For any graph G = (V,E), M C E is a maximal matching if and only if there is no augmenting paths in G.

1T learned this algorithm in both Algorithm course by Umang and Combinatorial Optimization course by Kavitha. So I am mixing their notes here.
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Proof: Suppose M is a maximal matching. Then if G has an augmenting path p. Then we can just take the odd edges in
p and then replace the edges in M N p with those edges i.e. MAp and this is a larger matching than M. But this contradicts
the maximum property of M. Hence, G has no augmenting paths.

Now we will show that if M is not a maximum matching then G has an augmenting path. So suppose M is not
a maximum matching. Let M’ is a maximum matching. Then consider the graph G’ = (V,E’) where E' = MAM’. Now
every vertex in V has degree € {0, 1,2} in G’. Hence, the connected components of G’ are isolated vertices, paths and
cycles. In a path or cycle the edges of M and M’ not in both appear alternatively. Therefore, the cycles are even cycles.
Since |[M’| > |M]| there exists a path p such that number |[p N M’| > |p N M|. Therefore, the starting and ending edge of p
are in M’. Hence, p is an augmenting path in G. [

13.2.1 Flowers and Blossoms

By the above theorem like in the case of bipartite graphs we will search for augmenting paths in G for matching M and if
we can find an augmenting path p we will update the matching by taking M" = MAp and obtain a larger matching. But
unlike bipartite graphs we can not run the same algorithm for finding augmenting paths as there can be edges between two
odd layers or two even layers. So in the M-alternating tree there can be odd cycles, but these odd cycles have all vertices
except one vertex are matched using edges of the cycle. So we look for these special structures in the M-alternating tree
called blossom and flower.

Definition 13.2.1: Flower and Blossom

For a matching M a flower consists of an even M-alternating path P from
an exposed vertex u to vertex v, called the stem and an odd cycle containing
v in which the edges alternate between in and out of the matching except
for the two edges incident to v. This odd cycle is called the blossom.

N ovvns / blossom

Observation 13.5. For a flower since the stem is an even augmenting path the base of the blossom is even as well ass all the
other vertices of the blossom are even.

Since blossoms are in the way of getting augmenting paths we want to remove the blossoms from the graph.

13.2.2 Shrinking Blossoms

In order to remove the blossoms from the graph we will shrink the blossoms into a single vertex every time we encounter
a blossom while constructing the augmenting tree.

Question 13.1

How to shrink a blossom into a single vertex?

Let B be a blossom in G. Then the new graph is G/B = (V’, E") where
V= (V\B)U{w), E = (E\{(u,v): ueBorve B}) U{(u,05): u & B,o € B, (u,0) € E}

So if M is a matching in G then we can also a get a matching M/B in G/B from M after shrinking B into a single vertex
where M /B = M \ {Matching edges in B}.

Theorem 13.2.2

Let B be a blossom wrt M. M is a maximum matching in G if and only if M/B is a maximum matching in G/B.

Proof: (=) : Suppose M/B is not maximum matching in G/B. Let N is a matching in G/B larger than M/B. Now if N
has no edge incident to vj, then N is also a matching in B. Let N’ is the matching in G. If there is an edge (u, vp) incident
on vy in N then we can expand the blossom B and get the matching where the base of B is matched with u and other
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vertices of B are matched inside B. So we have the matching N’ = (N \ {e}) U {(u, w) } where w in B connected to u in G.
Since [N’| = |N| > |[M/B| and B has ‘MT_I matching edges we have |N| + MT_l > |M/B|+ |B|T_1 = |M|. But M is maximum
matching in G. Hence, contradiction. Therefore, M/B is a maximum matching in G/B.

(&) : Suppose M is not a maximum matching in G. Now WLOG we can assume the blossom has an empty stem.
Otherwise, if Q is the stem of B we can consider the matching M’ = M & Q and |M’| = |M|. We now we will work with
a matching which gives B empty stem, and we will call the matching M. This will make the base of the blossom B an
exposed vertex. Now since M is not a maximum matching in G there exists an augmenting path P : u ~» v. Now if P has
no vertex of B then P/B is also an augmenting path in G/B, but we assumed that M/B is a maximum matching in G/B.
Hence, P must have a vertex of B. Let w be the first vertex of P in B. Then vertex v in G/B is unmatched. We remove the
part w ~> v from P. Let P’ = u ~» w. Now if w is the base of B then P’ is an augmenting path, and it is also an augmenting
path of G/B which is not possible. So w is not the base of the B.

The last edge of P’ is matched then it is also an edge of B. Then w is not the first vertex of P since the other end of
the last of P’ is before w. If the last edge of P’ is not matched then P’ is already an odd length alternating path from an
exposed vertex. Inside B we can find an even length alternating path from w to the base of B where the edge incident on
w is matched edge. Let that path is P. Now consider the path P = P’ + P. It is an augmenting path from u to the base of
B. Now since v;, is unmatched in G/B, P/B is also an augmenting path in G/B. But this contradicts the assumption that
M /B is a maximum matching in G/B. Then P can not exist. Hence, M is a maximum matching in G. [ |

Question 13.2

If we find a maximum matching M* in G/B and then let N = M* U (Matching edges in B), is N a maximum
matching in G?

The answer is no. Consider the following example

w3 U3 Vo Wo w3 wo
b
W2 ” ” w1 w2 wi
M = {(uo, u1), (uz,us)} N = {hwz,b)}

N’ = {(wa,u2), (us,usg), (uo,u1)}

N’ is not maximum matching. Since {(v;, w;) | i € {0,1,2,3}} is maximum matching.

The above is not contradicting the theorem since the blossom with respect to N’ is not the blossom with respect to M.

13.2.3 Algorithm for Maximum Matching

Suppose we start with a matching M in G. We mark all the exposed vertices to be even and keep all the other vertices
unmarked at this point. Hence, initially all the vertices are marked even. Now we use the same algorithm for finding
augmenting paths as in the case of bipartite graphs but with slight modifications. In the case of bipartite graphs at each
iteration we created the M-alternating tree we went one level at a time. But in the case of general graphs we’ll go two
levels at a time. So at each iteration we start with a vertex which is labeled even. Let u be a vertex labeled. Now for each
neighbor v of u:

Case 1: v is unmarked. This implies v is matched. Then mark v as odd and M(v) i.e. the vertex matched with v as even
and continue the algorithm.
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Case 2: v is marked, and it is in the same tree as u. Then we have a blossom B with respect to M. We shrink the blossom
B and therefore, we have the matching M/B in the graph G/B. Mark the shrunk vertex v, even and continue the
algorithm in the graph G/B with the matching M/B.

If we get an even cycle then we just ignore i.e. ignore any neighbor marked odd.

Case 3: v is marked even, and it is in a different tree from u. Let r, and r, are the root exposed vertices in the tree of
u or v respectively. Then consider the path P : r, w» u — v ~» r,. This is an augmenting path from r, to r,.
Hence, the algorithm found an augmenting path with respect to M. Now unshrink the blossoms in P to get the

alternating path in G. Let that path is P. So the algorithm updates the matching M to M & P, and then we will
start the algorithm again with the new matching M @ P.

Shrink Unshrink
_— _
/

./.4‘\.

Time Complexity: The algorithm performs at most n augmentations. Between two augmentations, it will shrink a
blossom at most % times as each shrinking reduces the number of vertices by at least 2. The time to construct the alternating
tree is at most O(n + m). Hence, the total time taken by the algorithm is O(n?(n + m)) = O(n’m).

13.2.4 Tutte-Berge Theorem

Theorem 13.2.3
In any graph G = (V, E) for any matching M in G and any S C V,

V| +|S| — Odd(G - S)

M| <
2

where Odd(G — S) is the number of odd components in G — S.

Proof: If |S| > Odd(G — S) then we already have this since [M| < . So let |S| £ Odd(G - S). Now each odd size
component has at least one vertex unmatched in that component. So if that vertex is matched it is matched with a vertex
in S. So M leaves at least Odd(G — S) — |S| vertices unmatched. Hence, at most all the rest |V| — (Odd(G — S) — |S|) vertices

are matched in G. Therefore, |[M| < w. [

Now the algorithm stops if none of the cases 1, 2, or 3 happens. Let G’ = (V’, E’) is the final graph after shrinking
all the blossoms algorithm encountered in its runtime. And let M’ is the matching in G’ after the algorithm stops. Now
we will show that M” is a maximum matching in G’.

Lemma 13.2.4

When none of the 3 cases holds the matching M’ is maximum in G’.

Proof:  We will show that M’ attains equality in Theorem 13.2.3 for some subset S of vertices. Since the algorithm
stops the M’-alternating tree in G’ has no blossoms. So the M’-alternating tree is a forest. The algorithm marked the
vertices of G’ as even or odd. Take S be the set of all odd marked vertices. Hence, all the components of G’ — S are odd

components where each component contains single vertex which is labeled even. So Opp(G - S) = |V’| — |S|. Therefore,
[V’ |+]S]~ Odd(G S) _ IV'I+Sl- (IV\ ISh _

= |S|. Since all the odd vertices are matched with even vertices in G’ we have |S| = |M’|.

Hence, |M'| = W . Therefore, M’ is a maximum matching in G’. [

Let the algorithm performs k blossom shrinking. Let By,..., By are the blossoms. And let M; be the corresponding
matching. i = 0 corresponds to the original graph. Let G; = (V;, E;) be the graph after i*" blossom shrinking. So Gy = G
and Gy, is the final graph after the algorithm stops. The above lemma shows that M is a maximum matching in Gi. We
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will show that if we unshrink the blossoms one at a time in the reverse order of shrinking then we will get a maximum
matching.

Lemma 13.2.5

If My, is a maximum matching in Gg. Then Mj_; is a maximum matching in Gy_;.

Proof: Gy is obtained from Gy_; by shrinking the blossom Bg. So Gy = Gi—1/Bg, My = My_1/Bk. So |Vi—1| = |Vi| +
|Br| — 1 and |[Mg_1| = |Mg| + %(lBkl —1). Let S be the set of odd vertices in G. Now while unshrinking the blossom By
we add an even number of vertices (|Bx| — 1) to one of the connected components to one of the connected components of
Gy — S and all these vertices are marked even. So the set of odd vertices of Gi_; are the same as set of odd vertices in Gy.

Hence, Odd(Gy. — S) = Odd(Gy_ — S). Therefore,

[Vi—1] + S| = Odd(Gy—1 = S) _ |Vi| +|Bx| — 1+ S| — Odd(Gy - S) |Bi| — 1
: ——= = = [Mi| + ——— = [Mi|
2 2 2
Therefore Mj_; is a maximum matching in Gg_;. [ |

Using the same S we can show that if M;,; is a maximum matching in Gjy; then M; is a maximum matching in G;.
Hence, we can conclude that if My is a maximum matching in Gy then M, is a maximum matching in G. Therefore, after
unshrinking all the blossoms in the reverse order of shrinking we get a maximum matching in G. Therefore, the above
algorithm returns a maximum matching of G.

Also, we have shown that the maximum matching attains equality in Theorem 13.2.3 for the set of odd vertices S.
Hence, we have the following theorem.

Theorem 13.2.6 Tutte-Berge Theorem

For any graph G = (V, E),
C|VI+|S| = Odd(G - S)
max M| = min

M matching in G ScvV 2

where Odd(G — S) is the number of odd components in G — S.

Now from the Tutte-Berge Theorem we conclude that a graph has a perfect matching if and only if for every S C V,
the number of odd components in G — S is at most |S|. Hence, we have the following corollary.

Corollary 13.2.7 Tutte’s Matching Theorem
For any graph G = (V, E), G has a perfect matching if and only if for every S C V, Odd(G - S) < |S|.
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Linear Programming

14.1 Introduction

Definition 14.1.1: Linear Program

A linear programming problem asks for a vector x € IR? that maximizes or minimizes a given linear function,
among all vectors x that satisfy given set of linear inequalities.

The general form of a maximization linear programming problem is the following: given ¢ € R", b € R™, a; € R"
for each i € [m] then

maximize ¢ x

subject to aiTx <b; Vielp],
alx=b;, Vie{p+1,...,p+q},
alx>b; Vie{p+q+1,...,m},
x; =20 Vje[k],
x; <0 Vje[{k+1,...,k+I} (Some x;’s are free)

The similar goes for minimization linear programming problem. For maximization problem we can always write
the LP in the form

maximize c¢!%

subjectto alx <b, Vie [m],
x;20 Vje[n]
And then the LP is said to be in the canonical form. What we can do is the following:
« Forie {p+q+1,...,m}, we can replace al.Tx < b; with —al.Tx > —b;
. Fori€ {p+1,...,p+q}, we can replace with two constraints a’ x > b; and al x < b;
« Forje{k+1...,k+I}, we can replace x; < 0 with —x; > 0
« For j € {k+1+1...,n}, we can replace the free x;’s with x;.r —-x; all the equations where x;.’, x; 20

This way we can always get a LP of that form. Now we can replace the d; for i € [m] with a matrix A € R™*" and replace
the constraint diTx <bj,Vie [m] withAx <b

maximize c!x minimize ¢! x
subject to Ax < b, subjectto Ax > b,

x>0 x>0
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14.2 Geometry of LP

Definition 14.2.1: Feasible Point and Region

A point x € R" is feasible with respect to some LP if it satisfies all the linear constraints. The set of all feasible
points is called the feasible region for that LP.

Feasible region of a LP has a particularly nice geometric structure. Before that we will first introduce some geo-
metric terminologies used in the linear programming context:

Definition 14.2.2: Hyperplane, Polyhedron, Polytope

« Line: The set {x + Ad, A € R} is line for any x,d € R".

X

« Hyperplane: The set {x € R": a* = b} is a hyperplane for any a € R” and b € R.
« Hyperspace: The set {x € R": a* < b} is a hyperspace or half-space for any a € R” and b € R.

« Polyhedron: A polyhedron is the intersection of a finite set of half-spaces i.e. the set {x € R": Ax < b}
for any A € R™™, b € R™.

« Polytope: A bounded polyhedron is called a polytope.

Now it is not hard to verify that any polyhedron is a convex set i.e. if a polyhedron contains two points then it
contains the entire line segment joining those two points.

Lemma 14.2.1

Polyhedron is a convex set

Hence the feasible region of a LP creates a polyhedron in R". And ¢ x is the hyperplane normal to the vector ¢ and
the objective of the LP is by moving the plane normal to the vector ¢ for which point in the polyhedron the hyperplane
cTx has the highest value. Since polyhedron can be unbounded there may not exists any point x where ¢! x is maximum.

Suppose we have a LP

maximize c¢'x
subjectto Ax < b,
x>0

Let P be the polyhedron P = {x € R": Ax < b}. Then given x* € P if any constraint aiTx* = b; then this constrain is said
to be tight or binding or active at x*. Now two constraints al.Tx < b; and ajrx < b; are said to be linearly independent if a;
and a; are linearly independent.

Definition 14.2.3: Basic Solution and Basic Feasible Solution

x* € R" is a basic solution if n linearly independent constraints are active at x* (Doesn’t need to be feasible).
x* € R" is a basic feasible solution if x* is a basic solution and x* € P. The basic feasible solutions are also
called corners of a polyhedron.

Theorem 14.2.2
Given a LP

minimize ¢! x
subjectto Ax > b,
x>0

Let P is the polyhedron {x € R": Ax < b,x > 0} . Suppose P is non-empty and has at least one basic feasible
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solution then either the optimal value is —co or there is an optimal basic feasible solution.

Theorem 14.2.3
If polyhedron P does not contain a line it contains at least one basic feasible solution (Hence if P is bounded it
contains at least one basic feasible solution).

With this geometry in hand, we can easily picture two pathological cases where a given linear programming
problem has no solution. The first possibility is that there are no feasible points; in this case the problem is called infeasible.
The second possibility is that there are feasible points at which the objective function is arbitrarily large; in this case, we
call the problem unbounded. The same polyhedron could be unbounded for some objective functions but not others, or it

could be unbounded for every objective function.

Example 14.2.1

« Maximum Matchings: Given undirected graph G = (V,E). Say variable x, foreache € E,x, =1 = e
in matching and x, = 0 otherwise.

maximize E Xe

ecE

subject to Z x. <1 VYoeV,
e incident on v
Xe =0 Ye€kE,
xe € {0,1} VecE

Observation. M is a matching iff {x: x. = 1 ife € M, = 0 otherwise} is a feasible solution

« Maximum s — t Flow: Given directed graph G = (V,E) with vertices s, t and capacity ¢, on edges. Say
variable x, for each edge and equal to flow on that edge. Then the LP of this problem:

maximize Z s
ecout(s)

subject to Z Xe — Z xe=0 VYoeV,o#s,t,
ecin(v) ceout(v)
Ce 2 Xe 20 VeeE

We will now introduce a theorem without proof that for any LP with a polytope we can find a solution in polynomial

time.

Theorem 14.2.4
Let P = {x € R": Ax > b} be a polytope. Then we can find an optimal basic feasible solution for the LP min ¢’ x

where x € P in polynomial time.

14.3 LP Integrality
For the LP for matchings in bipartite graphs G = (L UR, E) we have:
maximize Z Xe

ecE
subject to Z Xe<1 VoveV,

e incident on v

Xe >0 Yee€kE
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We want x, € {0, 1} i.e. we want to have integral solution for this LP

Question 14.1

LPs can give fractional solutions. When is solution integral?

Sufficient Condition: Every basic feasible solution of the feasible polytope is integral i.e. x* is basic feasible solution
= x* € Z". If all basic feasible solution are integral then for all I C [m] with |I| = n, A;lbl is integral. Let x = AI_IbI
j
Then j** component xj = % (Cramer’s Rule).

14.3.1 Totally Unimodular Matrix

Definition 14.3.1: Totally Unimodular Matrix (TUM)

A matrix A € {0, 1, —1}™*" is totally unimodular (TU) if every square submatrix of A has determinant —1,0, 1.

Hence in the above LP is A is TU and b is integral then all basic feasible solutions are integral.

Lemma 14.3.1
Let Abe TUM and b € Z" then P = {x: Ax > b} is integral i.e. every basic feasible solution is integral.

Hence using Theorem 14.2.4 if the polytope is integral we can find optimal integral solution in polynomial time.
We will now discuss properties of Totally Unimodular Matrix.

Lemma 14.3.2
A € {0,1,-1}™" is TU iff the following are TU:
(i) —A
(i) AT
(i) [A e].[A -e
(v) [A I].[A -]

(v) [A Ai], [A —Ai] where A; is the i*" column of A.

Corollary 14.3.3
If Ais TUM and a,b,c,d € Z" are integer vectors then the polytope Q = {x € R": a < Ax < b,c < x < d}is
integral.

Proof: We can combine the four inequalities in one inequality. Consider the matrix [A -A I -I ] " Then the given
polytope is

A b
-A -a
—_ n.
Q=ixeZ": 7 l* < d
-1 —c
By Lemma 14.3.2, [A -A I -I ]T is a TUM since A is TUM. Therefore the polytope Q is integral. [

The following theorem lets us to give a necessary and sufficient condition to check if a given matrix is TUM. Again
we will accept the following theorem without the proof since the proof is a little nontrivial.
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Theorem 14.3.4
Let A € {-1,0,1}™ " Then A is TU iff every set S C [n] can be partitioned into Sy, S; such that

ZA,— ZA,- € {-1,0,1}™

i€S; i€S,

where A; is the i'" column of A. C

14.3.2 Integrality of Some Well-Known Polytopes

Now using this theorem we will show that the polytope for bipartite maximum matching is integral. The LP for bipartite
maximum matching is given by:

maximize E Xe
ecE

subject to Z Xe<1 VoveV,

e incident on v

Xe >0 YeekE

Lemma 14.3.5

The polytope for bipartite maximum matching is integral.

Proof: Let A be the matrix for the polytope. Now clearly from the construction of the polytope we have A € {0, 1}"*™
where n = |V| and m = |E|. Now we will show that AT is TUM. Let L and R are the two sets of vertices in the bipartite
graph. Now suppose S € L UR. Then take S; = SN L and S; = SN R. Then for any row e € E, we have

ZA,-—ZA,— € {-1,0,1}

i€eS; i€S,

Hence AT is TUM and therefore by Lemma 14.3.2 A is TUM. Hence the polytope for bipartite maximum matching is inte-
gral. [ ]

For general graphs this polytope is not integral. Consider the triangle graph Ks. Then the point (%, %, %) is a feasible
solution but not in the convex hull of the integral solutions (1,0, 0), (0, 1,0) and (0,0, 1).

Lemma 14.3.6

The LP for s — t max flow is

maximize Z %
ecout(s)

subject to Z Xe — Z xe=0 VYoeV,0o+#s,t,
ecin(v) ecout(v)
Ce 2 Xe 20 YeekE

Then the max flow polytope is integral.

Proof: Let A be the matrix for the polytope. We will show that A is TUM. Given S € V' \ {s,t} take S; = Sand S; = 0.
By the first condition of the polytope for all vertices we already have satisfied the condition

ZAi—ZAiZOE {—1,0,1}m

€S i€S,
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Therefore the polytope is TUM and hence integral. [

14.4 Duality

Suppose we have the following LP:
minimize x; + 2x,

subjectto x; —x; >3,

2x1+x2 2 1,

X1, X2 > 0
Suppose we want to have a lower bount on the optimal solution of the LP. Then we will try to find a linear combination
of the constriants such that in the LHS we obtain some thing which is at most the objective function and on the RHS we

get the lower bound. So let we multiply the first constraint with y, second with y,. For now y;, y, are unknowns. Then
we have the following:

X1+ 2x = (Y1 +2y2)x1 + (—y1 + y2) %2
=y (x1 — x2) +y2(2x1 +x2) 2 3y1 + 1,

But we also have the conditions that the coeflicients of x; and x; can not be more than the coefficients of x; and x5 in the
objective function respectively. So we have the following conditions:

y1+2y; <1
“Y1+12 <2

So now we have found a maximization LP which gives us a lower bound on the optimal solution of the original LP:

maximize 3y; +

subjectto y; +2y, <1,
—Y1+y2 <2,
Y1, Y2 =0

This is called the dual of the original LP. The original LP is called the primal of the dual. The primal and dual are related
in a very nice way. The following theorem gives us the relation between primal and dual.
For every minimization LP there is a dual LP that provides a lower bound on the optimal value of the primal LP.

If the Primal LP is unbounded then the dual LP is infeasible.

Lemma 14.4.1
Dual of Dual is the primal LP

14.4.1 Dualization of LP

If the primal LP is in canonical form then we have the following:

maximize ¢l x minimize b’y
subject to Ax < b, — subjectto ATy <,
x>0 x>0

Primal
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Proof of Lemma 14.4.1:  Suppose for A € R™*", ¢ € R", b € R™ we have the following LP:
maximize clx
subjectto Ax <b xeR"
Then the dual the LP is
minimize by
subjectto ATy=c yeR™,
y=0

Now consider the LP

maximize — bTy

subjectto ATy <c yeR™,
—ATy < —c,
-y<0

These two LP’s are equivalent. Now we obtained another LP which is equivalent to the dual LP. Now we will work
with this one. Let

AT c
A=|-AT| A e R@Emxm & |_¢| &e R¥™ b=-b
-1, 0

Then the above LP is basically the following
maximize ETy
subjectto Ay <é yeR™
Hence the dual of this LP is
minimize ¢ z
subjectto Alz=5b ze R*™™,

z2>20

Letz = [p q r]T where p,q € bbR™ and r € R™ and let r; denote the i*? coordinate of r for i € [m]. . For any feasible
solution z of the LP Ap —Aq—r=-b & A(q—p)+r=>b. Take w = q— p then

Ap-Aq-r=-b & A(g-p)+r=b — Aw+r=>
Since r > 0 we have Aw < b. And we have the minimize
¢ =clp-clg=c'(p-9

Hence it is equivalent to maximize ¢/ w. Since final cost vector doesn’t depend on the vector r we can disregard r from
the constraints and replace with Aw < r. Therefore the above LP is equivalent to

maximize c’w
subjectto Aw <b weR"

This is LP is exactly the primal LP. Hence the dual of dual LP is the primal LP. [ ]

But if the primal LP is not in the canonical form then we have two options: either we can convert the primal to
the canonical form and the dualize it or we can directly dualize the primal LP. The following method gives us a way to
dualize the primal LP without converting it tot the canonical form.
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minimize b7y

maximize ¢! x m
subject to ZAﬁyj <¢ Vielk],
subjectto Ajx>b; Vjel[d], j=1
ijzbj VjE{d+1,...,m}, — m
Aiiyi =c¢; Vie{k+1,...,n},
x>0  Vie[k], JZ:; 1Y = €j ief n}
x;isfree Vie{k+1,...,n} y; >0 Vjeld]
J = >
yjisfree Vie{d+1,...,m}

So we have the following observations:
Observation. In dualization of a LP which is not in canonical form

Primal Dual
Non-negative variables Inequality constraints
Free variables Equality constraints

—
—

14.4.2 Weak and Strong Duality

Now as the motivation for constructing the dual LP. We have the following theorem which proves the any feasible solution
of the dual LP indeed gives a lower bound on the optimal solution of the primal LP.

Theorem 14.4.2 Weak Duality Theorem

If x, y are feasible solutions for the primal and dual LPs respectively and then ¢’ x > bTy.

Proof: We have

d m d m n n m m
bT < Zyj(ij)+ Z yj(ij) ZZyjAjXZZ yjAj,-xi:Zx,- Ajiyj < inci =Cx
= j=d+1 j=1 7=1 =1 =1 j=1 i=1
Hence we have the theorem. ]

We also have a much stronger theorem which tells us that the optimal solutions of the primal and dual LPs are
equal.

Theorem 14.4.3 Strong Duality Theorem
Let the primal and dual LP are feasible and x*, y* are the optimal solutions of the primal and dual LPs respectively.

Then ¢x* = bTy*.

Notice that if for any feasible solution y of the dual LP is ¢/ x* = bTy then y must be the optimal solution of the
dual LP.

14.4.3 Complementary Slackness

Question 14.2

Suppose we have optimal solutions x*, y* of the primal and dual LPs respectively. What can be said about which
constraints are tight in the primal and dual?




Page 101 CHAPTER 14 LINEAR PROGRAMMING

Theorem 14.4.4 Complementary Slackness

Let x*, y* be the optimal solutions of the primal and dual LPs respectively iff:
(i) If Ajx* > b; then y;f =0.

(ii) I A" y* < ¢; then x? = 0.

Proof: Suppose x*,y* are the optimal solutions of the primal and dual LPs respectively. Then by Strong Duality Theorem
we have

k m n m k n
=1 j=1 i=k+1  j=1 i=1 i=k+1
So we have

k m k
Z Xi ZAjiyj = Z XiC;

i=1 j=1 i=1

m .
Hence either x; = 0or ), Aj;y; = c;foralli € [k]. So AlTy* < ¢; implies x} = 0. Similarly we have A;jx* > b; then y}f =0.m
j=1

There is also a relaxed version of the complementary slackness theorem, Theorem 15.1.4 which is useful in practice.
It is explained in the next chapter.

14.4.4 Max-Flow Min-Cut Theorem

So here using LP-duality we give another proof of Max-Flow Min-Cut Theorem. The LP for maximum flow is given by:

maximize Z Xe
ecout(s)

subject to Z Xe — Z xe=0 VYoeV,o#s,t,
ecin(v) ceout(v)

ce>x, Ve€kE,
xe>0 Ve€eE

We can convert this LP by adding edges of in(s) and giving them capacity 0. So we have the modified LP:

maximize Z Xe — E Xe

ecout(s) ecin(s)
subject to Z Xe — Z xe=0 VYoeV,o#s,t,
ecin(v) ceout(v)

Ce >%x, Ve€E,
xe>0 VeeE

For the first constraint we have the variables «, and for the second constrain we have the variables f,. So the dual of this
LP is given by:

minimize Z cefe
ecE
subjectto —ay+ay,+f. >0 Ve=(uv)c€Euoé¢/{st}
a, >0 VYoeV,u#s,t,
Pe=0 VecE
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Now we can add s = 1 and a; = 0 to the dual LP and obtain the modified dual LP:

minimize E Cefe

ecE
subjectto f. > ay, —ay,+ VYe=(u,v)€Euoé¢{st}
a, >0 YVoeV,vo#s,t,
Be >0 VecE,
as =1,
a; =0

Now for the max-flow LP we already proved in Lemma 14.3.6 that the polytope is integral. By Lemma 14.3.2 the polytope
for the dual is also integral. Let x*, (a*, f*) be the optimal solution of the primal and dual LPs respectively. Now by
Complementary Slackness we have the following:

*

* * * K * __
X, >0 = f=a,-a, and fo>0 = x, =c

Now a; = 1. Let X = {v: o} > 1}. Thens € X and t ¢ X. Hence X is a s — t cut. Now consider an edge (u,v) out of X.
Then
a,>landa, <1 = £, >0 = x, =c,

And for an edge e = (u,0) in to X
x>0, <la,>21 = f,<0

Hence for an edge e into X, x} = 0. Hence maximum flow is equal to the  », ¢, and this is the minimum cut.
ecout(X)

14.4.5 Maximum Bipartite Matching minimum Vertex Cover

The maximum bipartite matching problem is given by the following LP:

maximize E Xe

ecE

subject to Z xe <1 VYoevV,
e incident on v
Xe >0 Ye€eE

The dual of the LP si given by

minimize Z Yo
veV
subjectto y,+y, =1 V (u,0) €E,

Yy =20 VoeV

Since in Lemma 14.3.5 we have proved the polytope for bipartite maximum matching is integral the polytope for the dual
is also integral.

Definition 14.4.1: Vertex Cover

Given G = (V, E) a vertex cover is a subset C C V such that V e € E at least one of the endpoints of e is in C.

Then we have the following lemma:

Lemma 14.4.5

Let C be a vertex cover. Then there exists a dual feasible solution y such that ; y, = |C|.

Proof:  Consider the vector y € {0,1}!V! such that y, = 1if v € C and y,, = 0 otherwise. Then we have the lemma. m
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Lemma 14.4.6

Let y be an integral dual solution. Then C = {v: y, > 1} is a vertex cover.

Proof: For every edge e = (u,v) we have y, +y, > 1. So either y,, > 1 or y, > 1 as y is integral. Hence either u € C or

v € C. Hence every edge is covered by C and hence C is a vertex cover. [ ]

In general graphs computing a minimum sized vertex cover in NP-hard. But since for bipartite graph the polytope is
integral we can compute minimum weight vertex cover in polynomial time.
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Approximation Algorithms using LP

In this chapter we will study some approximation algorithms using linear programming to get better approximation ratios

of the optimal solution.

15.1 Set Cover

SET COVER
Input: U: Universe of all elements u, ..., u,

S={S1,...,Sm},Si €U forall i € [m]

Functionc: S — Z,
Question: Given U, S and the function ¢ find T C [m] such that |J S; = U to minimize the total cost ¢(T) =

ieT
2 c(Si)
ieT

Since the special case of Set Cover is basically the Vertex Cover problem we discussed earlier, we know that Set
Cover is NP-hard. We will discuss NP-hardness in the next chapter.

Theorem 15.1.1
Set Cover is NP-hard.

Since we are going to find approximate solutions using LP let’s first write the linear program for Set Cover:

minimize Z c(S)xs
SeS

subject to Z xs>1 Yuel,
Swues
x>0 VSeS

15.1.1 Frequency f-Approximation Algorithm
Let for any element u € U, f, is the frequency of the element u in S i.e. f;, = [{S € S: u € S}|. Then let f = max{f,: u €

U}. Then we want to find a f-approximation algorithm for set cover.

Question 15.1

For vertex cover what is f?

For all e € E we have f, = 2 since the elements of universe corresponds to the edges and the set corresponds to

vertices and each edge is contained in exactly 2 sets. So f = 2.
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Algorithm 54: f-Approximate Algorithm
Input: U, S,c

Output: T C [m] such that |J S; = U and 2, ¢(S;) is minimized
i€T ieT

1 begin
T—0
£ «—0lS!
Let x* is the optimal solution of the LP for Set Cover problem
for S; € S do
if x5 > J% then
L T «— TU{i}

%5, — 1

A G e W N

~N

9 return T

Lemma 15.1.2

X is a feasible solution.

Proof: For all e € U there are at most f sets containing e. Thus, at most f terms in the summation in LHS of the first
constraint for each e € U Thus in x* at least one such term is > j% ]

Lemma 15.1.3

2 c(S)Xs < f- 3 e(S)xg
SeS SeS

Proof: 1In x if s = 1 that means x; > ch Therefore, we have the lemma. ]

Hence, with this algorithm we can get a f-approximation for Set Cover problem. In the next subsection we will
see a new way of getting the same approximation ratio.

15.1.2 Frequency f-Approximation Algorithm through Dual Fitting

First let’s write the dual of the LP for Set Cover problem:

minimize Z c(S)xs maximize Z Yu
SeS uel
subject to Z xs>1 Yuel, subject to Z y, <c(S) VSeS,
S:ueS — uesS
x>0 VSeS Yy =0 Yuel
“Covering Problem” “Packing Problem”

Both the primal and dual are feasible. Let x, y are feasible solutions of the primal and dual respectively. Then by Weak

Duality we have
Z C(S)xS 2 Z Yu
SeS uel
Let x*, y* are the optimal solutions of primal and dual respectively. Then by Complementary Slackness

x;>0=>Zy;;=c(S), y, >0 = Zx*zl
ues Swues
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Theorem 15.1.4 Relaxed Complementary Slackness

Suppose x, y are feasible solutions of the primal and dual respectively and they satisfy the following conditions:
1. If x; > 0 then % ¢ < AjTy < cj where a > 1.
2. If y; > 0 then b; SAI.TxS,B-biwhereﬁZ 1.

Then
c'x<af-b'y<ap-c'x* =apf-OPT

Proof:  x,y are the feasible solutions of the primal and dual respectively. Then we have

Ty = icjxj < i (aAjTy) Xj ai Ajjyixj = “i iAijxj
/ = ' 1

j=1 j=1 i= i=1 \i=1

=

Yi < “Zﬁ'biyi =af-bly
i=1

Hence we have ¢c’x < af-bTy < af-cIx* = aff - OPT. ]

To show a f-approximation algorithm for set cover we will first find feasible solutions of primal, dual, x, y which
satisfies:

1. x is integral.

2. x satisfies the first condition of Relaxed Complementary Slackness with a = f.

Algorithm 55: Dual Fitting Algorithm for Set Cover

Input: U, S,c
Output: T C [m] such that |J S; = U and }; ¢(S;) is minimized
i€T i€T
1 begin
2 Initialize U’ «— U, C «— 0
3 while 3u € U’ do
4 Increase y,, until for some S € S with u € S we have Y, y,s = ¢c(S)
u’'eS
5 C<—CU{S€S: Zyuzc(S)}
ues
6 for S € Cdo
7 L U — U \S
8 | returnC

From C we con construct x by xs = 1if S € C and otherwise xs = 0 for all S ¢ C. Now we have the observations:
Observation. After the algorithm terminates we have:
1. At the beginning of the loop ifu € U, y, = 0.
2. Ifxs =1 andu € S theny, is not increased.

3. x € {0,1}!5! is integral.
Lemma 15.1.5

1. x is feasible at the end of the algorithm.

2. y is feasible at every iteration of the while loop
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Proof: The algorithm terminates when U’ = 0. That means all the elements of the universe are covered. Hence, the set
C output after the algorithm terminates is indeed a set cover. Hence, x is a feasible solution.

At the start of the algorithm y = 0/¥l. Hence, y is feasible. Now suppose at any iteration y is feasible. If the
algorithm goes through another iteration then there exists an element in U’ which is not covered. Let u € U’ which is

not covered. Hence, y,, = 0. Since in the previous iteration y was feasible we have ), y, < ¢(S). Now we increase y,
S:ues
to the point we achieve the equality >, y,» = ¢(S) for all S € S with u € S. Therefore, even after updating y, all the

constraints of dual are satisfied. Hence, y is a feasible solution after another iteration of the while loop. Therefore, y is
feasible at every iteration of the while loop. ]

Lemma 15.1.6

x, y satisfy the Relaxed Complementary Slackness conditions.

Proof: Ifforany S € S, xs > 0 then we have }; y, = c(S) by the construction of C in the algorithm. Therefore,

ues

xs >0 = Zyuzc(S)

ues

Hence o = 1.
Now let for some u € U, y, > 0. Since f is the maximum frequency of any element of the universe we have

f = Y xs = 1. Therefore,
S:ueS

Yu>0 = f> Zx521
S:ues

Hence § = f. ]

Therefore, by Relaxed Complementary Slackness C is an f-approximate solution for the set cover problem. But
f-approximation is not good enough since one element can be in too many sets, and then it doesn’t give a good approxi-
mation. In the next subsection we will show how to get a better approximation ratio.

15.1.3 O(nlogn)-Approximation Algorithm through Randomized Rounding

Here we will show a randomized algorithm to get better approximation ratio. The idea is to use the LP we constructed
earlier and then randomly select the sets with probability proportional to the value of the corresponding variable in the
LP. This is known as randomized rounding,.

Algorithm 56: O(nlog n)-Approximate Algorithm

Input: U, S, c
Output: T C [m] such that |J S; = U and }; ¢(S;) is minimized
ieT ieT
1 begin
2 £« olSI
3 Let x* is the optimal solution of the LP for Set Cover problem
4 for S € S do
5 L Set X5 «— 1 with probability x.

6 return £

= 2 ¢(S)xg. Now suppose we fixed an element u € U. Then
SeS

From the construction of £ we have [E [ >, ¢(S)Xs
SeS

IP[u is not covered| = l_[ IP[S is not selected] = 1_[ (1-x3) < 1_[ e™s = exp [— xe| <e™!
Swues S:ues Swues
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Hence to reduce the probability of not covering an element of U we repeat the algorithm multiple times. Hence, we have
the updated algorithm:

Algorithm 57: O(nlog n)-Approximate Algorithm

Input: U, S,c
Output: T C [m] such that |J S; = U and }; ¢(S;) is minimized
ieT ieT
1 begin
2 Let x™ is the optimal solution of the LP for Set Cover problem
3 for i € [2]logn] do
4 Cl‘ «— 0
5 for S € S do
6 L Put S in C; with probability x;.

2logn

7 C — U Ci
i=1

8 return C

Again now we fix an element u € U. Now we will calculate the probability that u is not covered in the union of
all C;’s.

IP[u is not covered by C] = IP[u is not covered by C; for all i € [2logn]] < e™218" = =
n
Hence, the probability that e is covered is at least 1 — # Therefore,

1 1
IP[3 e € U is not covered by C] < Z ==
n> n

ueld

Hence, P[C is a set cover] > 1 — % Now we have to bound the cost of C. By Markov’s inequality we have

1
P [c(C) > 6logn Z c(S)xg| < =
3
SeS
. g o1 1 1
IP [C is not a set cover OR cost of C > 6logan(5)x5 <—-+-<-
SeS no3 2

Therefore
P

\%
N | =

C is set cover AND ¢(S) < 6logn Z c(S)xEl
SeS

Hence with probability at least % we have a set cover C such that ¢(C) < 6logn 3. c(S)xg which gives us an O(log n)-
SeS
approximation algorithm for Set Cover problem.

O(log n)-approximatiobn is also the best we can do for set cover. Doing better than that is NP-hard.
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15.2 Makespan Minimization

MAKESPAN

Input: M: Set of m machines
J: Set of n jobs
P € IN™*": Matrix where P;; is the time taken by machine i to complete job j.

Question:  Given a set of machines M, set of jobs J and the matrix of time taken by i** machine to complete j*
job find an assignment o : J — M of jobs to machines to minimize the makespan S, = max{l;: i €

M} wherel; = 3, Pjjie. time taken by machine i to complete all jobs assigned by o
Jio()=i

h

Theorem 15.2.1
Makespan problem is weakly NP-hard by reduction from subset-sum.

Weakly NP-hard means there exists a pseudo polynomial time algorithm i.e. if all parameters are polynomially large
the algorithm can solve the problem in polynomial time.

Theorem 15.2.2
It is NP-hard to approximate within a factor of 1.5

Here we will show a 2-approximate solution of makespan optimization. First let’s construct the LP for makespan
optimization.

15.2.1 LP Construction
We'll use the variable x;; as an indicator for j*# job assigned to i** machine. Then here is the LP:
minimize T
subject to inj21 Vjed,
ieM
ZPijxj <T ViEM,
jeg
xij =0 VieM,jedJ

So here the first constrain basically says that every job assigned to some machine. The second constraint says that for
every machine the total time taken by the machine to complete the jobs should be at most the makespan where T denotes
the makespan. But this LP is not good enough. Consider the following example where there is only one job and P;; = m
then OPTp = 1 by setting x;; = % where as actually the optimal makespan is m. Hence this LP will not work. We have
to strengthen the LP.

So now assume we already know the optimal makespan T. Then if any P;; > T then we know that we can’t assign
the j*" job to i*" machine. So now we have the new updated LP:

minimize 0
subject to inj >1 VjedJ,
ieM
ZPijijT VieM,
jeg
xij =20 VieM,jeJ,
xijj=0 IfP;>T,VieMjedg
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This basically checks the feasibility for a specific T. Hence, now we can do a binary search over T’s to find the smallest
feasible T.

Theorem 15.2.3
By binary search O(log n) round we can find the smallest T such that LP(T) is feasible.

Now suppose we have the smallest feasible time. Let’s call this T. Then T < OPT;. Let X is the basic feasible
solution for T. We will now show a polynomial time algorithm to obtain an integral assignment with makespan = 27

15.2.2 Rounding to Get 2-Approximate Solution

Now we have the smallest feasible time T and the basic feasible solution for that ¥ which is also an extreme point. Now
we can think ¥ as a weighted bipartite graph between J and M with fractional weights i.e. one job assigned to multiple
machines fractionally. Let the graph is G = (L UR, E) where e = (i, j) € E, if X;; > 0 with w(i, j) = %;;. Hence, we also
have for all (i, j) € E, %;; < T.

Lemma 15.2.4

In X at least n — m jobs are assigned integrally.

Proof: There are total n + m + nm constraints in the LP. But the LP is nm dimensional. Therefore at %, nm constraints
are tight. So at most m + n constraints of the type x;; > 0 are not tight i.e. at most m + n many %;; are not zero. Suppose
a jobs are set integrally and f fractionally. So for each of the f jobs it is assigned to at least 2 machines. Now each of the
Xij corresponds to an edge of the graph. Therefore we have the following two equations:

a+f=na+2<m+n = f<m = a>n-m

Therefore there at least n — m jobs which are assigned integrally. [ ]

Lemma 15.2.5

In every connected component of G, #edges < #vertices.

Proof: Inthe graph G, as we showed earlier at most m + n constraints of the type x;; > 0 are not tight i.e. at most m+n
many X;; are not zero. Hence
#edges = [{X;; | Xij > 0}| < m+n = #vertices

Suppose C is a connected component. Let o, Mc be the jobs and machines of C and X|¢ is X restricted to C. Then
X|c is a basic feasible solution for the instance restricted to M¢, Jec with T being a feasible time. If ¥|c was not feasible
for M¢ and Jc then there exists y¢ and z¢ with ye # z¢ such that x|¢c = Ayc + (1 — A)z¢ where A € (0,1). Then

%= 2A(ye, ®lg) + (1= 2) (z¢, %lz)

Then X can not be an extreme point. And therefore by the same logic as above we have in the connected component
#edges < #vertices. Since C is arbitrary connected component this is true for every connected component. [

Now we create a feasible solution % for 2T. We first initiate % setting all 0’s. We fix a connected component C in G.
Furthermore, we call a vertex in Jo U Mc leaf if it has degree 1. If for any job j € J¢ it is assigned integrally in X|¢ then
Jj is a leaf. So we remove the node j and assign the job to the machine i € M, j is connected to. This also removes the
edge incident on j.

After doing this we still have #edges < #vertices because we basically removed same number of jobs and edges
from the graph. But now every job is connected to at least two machines.

If a machine i € Mc is a leaf, let the edge incident on i is (i, j) then we remove both i, j from the graph and assign
the job j to machine i i.e. basically we set X;; = 1. So the load added to i*h machine is at most T. We do this for every leaf
machine.

Now the graph has no leaves remaining. Since the graph is bipartite it is an even cycle. So find a matching of jobs
to machines in the cycle and assign the jobs accordingly i.e. if M is a matching and e = (i, j) € M then set £;; = 1.
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So we have the following final algorithm:

Algorithm 58: Makespan 2-Approximate Algorithm
Input: M, J,P where |[M|=m, |J|=nand P € Z>"

Output: o : J — M assignment of jobs to machines to minimize max{l;: i € M} where; = 3  P;;ie. time
Jio(j)=i
taken by machine i to complete all jobs assigned by o
1 begin
2 Do binary search to find the minimum feasible T for the LP.
3 Let T is the minimum feasible time and % is the basic feasible solution.
4 Construct the weighted graph G = (M U J, E) where (i, j) € Eif %;; > 0 and w(i, j) = & ;.
5 C «— Connected Components of G.
6 for C € C do
7 while 3 j € J¢ such that deg(j) = 1 do
8 Let (i,j) € E
9 o(j) i
10 | T —IT\{j}
1 while 3 i € Mc such that deg(i) = 1 do
12 Let (i,j) € E
13 o(j) «—i
14 M — M\ {i}
15 | I — I \{j}
16 M «—BP-MaximuMm-MAaTcHING. M will be a perfect matching.
17 fore = (i,j) € Mdo
18 L o(j) —i
19 return o

This algorithm works in polynomial time since solving the LP, constructing the weighted graph and finding the con-
nected components can be done in polynomial time and then for every component the while loops and finding matching
can also be done in polynomial time. So the algorithm is polynomial time.

This algorithm gives a 2-approximate solution because each machine i is assigned the jobs it is set integrally and
another job j if %;; > 0.
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P, NP and Reductions

Almost all the algorithms we have studied thus far have been polynomial time algorithms i.e. on inputs of size n, their
worst-case running time is O(n¥) for some constant k. A natural question to ask is whether all problems can be solved in
polynomial time. The answer is no.

There are problems that can be solved but not in polynomial time and there are problems which can not be solved via
an algorithm. To discuss problems in general think of computational tasks as language recognition problem. A language
is a subset of {0, 1}*. For example:

Leonn = {x € {0,1}" | x represents a connected graph}

So main problem we want to think about is to decide whether a given string is in the language or not. These problems are
also called decision problems.

Definition 16.1: Decision Problems

Given a language L C {0,1}" and a string x € {0, 1}* decide whether x € L or not.

An algorithm A solves this problem if x € L <= A(x) = 1. Time complexity of A: T#(n) is the maximum
running time of A on any string x of length n. Since we can work over any set of alphabets and alphabets can be encoded
into binary we will say languages are subset of * where X is the finite set of alphabets.

16.1 Introduction to Complexity Classes

Depending on time, space and some other resources based on how much they are used we divide the computational
problems into several sets. We call these sets as complexity classes.

Definition 16.1.1: Polynomial Running Time

A language L C 3* has a polynomial-time algorithm if there exists A that solves L and T4 (n) = O(n*) for some
constant k.

Now we introduce our first complexity class now. This class is called P.
P :={L € 3" | there exists a polynomial time algorithm that decides L}

Till now all the algorithms we have studied are in P.

Question 16.1

What about Lgar, Lscor, Losars Leonn?

We know Loy € P since we can run a DFS to check if all the vertex is reachable from a vertex. Also we know
Lysar € P. For other languages we don’t know if they are in P. But these problems have another noticable nature. Given
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a potential solution for the problem one can check if that is indeed a solution of the problem or not in polynomial-time.
Let’s abstract this notion:

Definition 16.1.2: Short Certificate of Membership

Alanguage have a short certificate of membership if there exists an algorithm A that runs in polynomial time and

VxelL, 3y epoly(|x]), A(x,y)=1
Vx¢L, Vy€poly(lx]), Alx,y) =0

What are the certificates or above-mentioned problems.
o Lgar: Assignment of the variables. Then we can verify if every clause is satisfied
o Lscop: Coloring of the edges. We can verify if all the edges follows the coloring constraint.
+ Lconn: A spanning tree. We can verify if every vertex is present there.
Now we introduce another complexity class called NP.
NP := {L C 3" | L has a short certificate of membership}

For NP we call the algorithm to check for the certificate verifier. Another way to think about the class NP is to extend the
computer to make “guesses” or exists in multiple states simultaneously. This is known as non-determinism. Then NP is
the class of languages decided by a polynomial time non-deterministic Turing machine. For example a non-deterministic
algorithm for 3SAT is

+ Make a guess for the assignment for each variable.
« If ¢ is satisfied return yes else return no.

Naturally any problem which is in P has a short certificate.

Theorem 16.1.1
P C NP.

Another complexity class which come associated with NP is coNP.
CONP := NP
i.e. the complement set of NP.

Observation 16.1. P= P

Theorem 16.1.2
P C coNP

Apart from these two we don’t know any relation between NP and coNP whether they are equal or not.

16.2 Reductions

Question 16.2

What does it mean for a problem to be at least as hard as another?

To relate hardness of one problem to another we introduce the notion of reductions. There are many reductions.
We will only focus on polynomial-time many-one karp reduction.
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Definition 16.2.1: Many-One Karp Reduction

Ly, L, C 3F are two languages. L is reducible to L, under polynomial time many-one karp reduction if and only
if there exists a polynomial time computable function f : ¥* — X* such that V x € X*

xel, & f(x)el,

and we denote it by L; SPOIY L,.

We call a language L to be NP-hard if for every language L’ € NP, L’ <P [ And Lis called NP-complete if L € NP
and L is NP-hard.

Theorem 16.2.1 Cook’s Theorem
3SAT is NP-complete.

Corollary 16.2.2
SAT is coNP-complete.

16.3 Some other NP-complete Languages

We will now show 3 other problems which are also NP-complete. We will show the following three problems to be
NP-complete

« INDSET = {(G, k) | Graph G has an independent set of size at least k}

« VC = {(G, k) | Graph G has a vertex cover of size at least k}

« SUBSETSUM = {(sl,...,st,T) [AXC[t], X si = T}
ieX

Theorem 16.3.1
INDSET is NP-complete.

Proof: Itis natural to see that INDSET € NP. Furthermore, we will show a reduction from 3SAT to INDSET. On the input
of ¢ of 3SAT we want to find a (G, k) instance such that

¢ is satisfiable &= G has an independent set of size > k

Let ¢ has m clauses on n variables. We build a graph G with 3m vertices with a triangle for each clause. Each vertex in a
triangle corresponds to a literal. Add edge between x; and X; for all variables x;.

Now with this construction we have ensured that for any variable x; if the literal x; is in the independent set then
X; is not in the independent set and vice versa. For each clause one vertex from each triangle is in the independent set. So
the target independent set size is of size n.

Now if there is a satisfying assignment for ¢ then we can pick the corresponding vertices representing the literals
which are set true and this will constitute an independent set. Similarly, if there is an independent set of size n in G then
for each variable we have picked only one literal and from each triangle we have picked only one, so this corresponds to
a satisfying assignment. ]

Theorem 16.3.2
VC is NP-complete.
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Proof: 1t is natural to see that VC € NP. We will show a reduction from INDSET to VC for NP-hardness of VC. Notice
that for any S C V, S is a vertex cover in G if and only if V' \ S is an independent set in G. Therefore, from the input
(G, K) we create the (G, n — k) and this way we found a bijection between independent sets and vertex cover. Hence, VC
is NP-complete. [ ]

Theorem 16.3.3
SuBseETSUM is NP-complete.

Proof: Again it is very easy to see that SUBSETSUM € NP. Like INDSET for this problem we will show a reduction from
3SAT. Let we are given a boolean formula ¢ with n variables and m clauses.

Now each s;, T are given by n + m long integer. First n positions are indexed by variables and last m positions are
indexed by the clauses. Each variable x; corresponds to 2 integers, sy, and sx,, one for each literal. For each literal x;, sy,
defined as the number which has 1 at the position of corresponding variable and 1’s at the position of clauses in which
that literal is present. Now each clause c; corresponds to 2 integers, s, Sc/- Both s, S/ has a 1 in the corresponding clause
position. Now T is defined to be the integer where it has 1’s in first n positions and 3’s in the last m positions.

Now notice if there is a satisfying assignment then we pick those numbers which corresponds to the literals which
are set to be two. Their sum matches with the first n positions of T. Now for the last m bits we pick the necessary number
of clause numbers to adjust. Similarly, if there is a subset sum then we set the corresponding literals to be true. Since the
first n positions of T are 1 all the variables are assigned to some value. Hence, we get SUBSETSUM is NP-complete. ]



CHAPTER 17 -

Bibliography

[Ide16] Martin Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps. arXiv
preprint, 2016.

[LSW98] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial algorithm for
matrix scaling and approximate permanents. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing - STOC *98, STOC 98, pages 644-652. ACM Press, 1998.



	1 Finding Closest Pair of Points
	1.1 Naive Algorithm
	1.2 Divide and Conquer Algorithm
	1.2.1 Divide
	1.2.2 Conquer
	1.2.3 Combine
	1.2.4 Pseudocode and Time Complexity

	1.3 Improved Algorithm for O(nlogn) Runtime
	1.4 Removing the Assumption

	2 Median Finding in Linear Time
	2.1 Naive Algorithm
	2.2 Linear Time Algorithm
	2.2.1 Solve Rank-Find using Approximate-Split
	2.2.2 Solve Approximate-Split using Rank-Find
	2.2.3 Pseudocode and Time Complexity


	3 Polynomial Multiplication
	3.1 Naive Algorithm
	3.2 Strassen-Schönhage Algorithm
	3.2.1 Finding Evaluations of Multiplied Polynomial
	3.2.2 Evaluation of a Polynomial at Points
	3.2.3 Interpolation from Evaluations at Roots of Unity


	4 Dynamic Programming
	4.1 Longest Increasing Subsequence
	4.1.1 O(n2) Time Algorithm
	4.1.2 O(logn) Time Algorithm

	4.2 Optimal Binary Search Tree

	5 Greedy Algorithm
	5.1 Maximal Matching
	5.2 Huffman Encoding
	5.2.1 Optimal Binary Encoding Tree Properties
	5.2.2 Algorithm

	5.3 Matroids
	5.3.1 Examples of Matroid
	5.3.2 Finding Max Weight Base
	5.3.3 Job Selection with Penalties


	6 Dijkstra Algorithm with Data Structures
	6.1 Dijkstra Algorithm
	6.2 Data Structure 1: Linear Array
	6.3 Data Structure 2: Min Heap
	6.3.1 Extracting the Minimum
	6.3.2 Decreasing Key of a Node
	6.3.3 Time Complexity Analysis of Dijkstra

	6.4 Amortized Analysis
	6.5 Data Structure 3: Fibonacci Heap
	6.5.1 Inserting Node
	6.5.2 Union of Fibonacci Heaps
	6.5.3 Extracting the Minimum Node
	6.5.4 Decreasing Key of a Node
	6.5.5 Bounding the Maximum Degree
	6.5.6 Time Complexity Analysis of Dijkstra


	7 Kruskal's Algorithm with Data Structures
	7.1 Kruskal's Algorithm
	7.2 Data Structure 1: Linear Array
	7.3 Data Structure 2: Left Child Right Siblings Tree
	7.3.1 Construction
	7.3.2 LCRS-Union Function
	7.3.3 Amortized analysis of LCRS-Union
	7.3.4 Time Complexity Analysis of Kruskal

	7.4 Data Structure 3: Union Find
	7.4.1 Find Operation
	7.4.2 Union Operation
	7.4.3 Analyzing the Union-Find Data-Structure


	8 Red Black Tree Data Structure
	8.1 Rotation
	8.2 Insertion
	8.3 Deletion

	9 Maximum Flow
	9.1 Flow
	9.2 Ford-Fulkerson Algorithm
	9.2.1 Max Flow Min Cut
	9.2.2 Edmonds-Karp Algorithm

	9.3 Preflow-Push/Push-Relabel Algorithm

	10 Randomized Algorithm
	10.1 Estimated Binary Search Tree Height
	10.2 Solving 2-SAT

	11 Derandomization
	11.1 Conditional Expectation
	11.2 Max-SAT
	11.2.1 Randomized Algorithm
	11.2.2 Derandomization

	11.3 Set Balancing
	11.3.1 Randomized Algorithm
	11.3.2 Derandomization
	11.3.3 Using Pessimistic Estimator to Derandomize


	12 Global Min Cut
	12.1 Naive Algorithm
	12.2 Karger's GMC Algorithm
	12.3 Karger-Stein Algorithm

	13 Matching
	13.1 Bipartite Matching
	13.1.1 Using Max Flow
	13.1.2 Using Augmenting Paths
	13.1.3 Using Matrix Scaling

	13.2 Matching in General Graphs
	13.2.1 Flowers and Blossoms
	13.2.2 Shrinking Blossoms
	13.2.3 Algorithm for Maximum Matching
	13.2.4 Tutte-Berge Theorem


	14 Linear Programming
	14.1 Introduction
	14.2 Geometry of LP
	14.3 LP Integrality
	14.3.1 Totally Unimodular Matrix
	14.3.2 Integrality of Some Well-Known Polytopes

	14.4 Duality
	14.4.1 Dualization of LP
	14.4.2 Weak and Strong Duality
	14.4.3 Complementary Slackness
	14.4.4 Max-Flow Min-Cut Theorem
	14.4.5 Maximum Bipartite Matching minimum Vertex Cover


	15 Approximation Algorithms using LP
	15.1 Set Cover
	15.1.1 Frequency f-Approximation Algorithm
	15.1.2 Frequency f-Approximation Algorithm through Dual Fitting
	15.1.3 O(nlogn)-Approximation Algorithm through Randomized Rounding

	15.2 Makespan Minimization
	15.2.1 LP Construction
	15.2.2 Rounding to Get 2-Approximate Solution


	16 P, NP and Reductions
	16.1 Introduction to Complexity Classes
	16.2 Reductions
	16.3 Some other NP-complete Languages

	17 Bibliography

