
CSS.201.1 Algorithms
TIFR 2024, Aug-Nov

Scribe: Soham Chatterjee

soham.chatterjee@tifr.res.in
Website: sohamch08.github.io

https://sohamch08.github.io/

Abstract

These notes comprise a scribed record of the lectures for the Algorithms Course conducted at the TIFR during the August–
November 2024 semester, instructed by Prof. Umang Bhaskar. The official course webpage is available at this link.

The primary reference for the course was Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein (CLRS),
complemented by supplementary materials and the lecturer’s own notes, which are accessible through the course web-
page. For the chapter on approximation algorithms, chapters 14, 15, and 17 of Approximation Algorithms by Vijay Vazirani
were also used.

These notes were prepared both as a personal academic resource and to facilitate revision for other students. They
have been typeset using a custom theme developed by me. The source code of the notes is available at this repository,
and the source code of the theme can be found in my GitHub repository. Any corrections, comments, or suggestions are
welcome and reach out to me at soham.chatterjee@tifr.res.in.

https://www.tcs.tifr.res.in/~umang/algos24.html
https://github.com/sohamch08/Algorithms-CSS.201.1-TIFR-2024
https://github.com/sohamch08/Eye-Candy-Lecture-Notes-Theme
soham.chatterjee@tifr.res.in

ContentsContents

Chapter 1 Finding Closest Pair of Points Page 6

1.1 Naive Algorithm 6
1.2 Divide and Conquer Algorithm 6

1.2.1 Divide 6
1.2.2 Conquer 7
1.2.3 Combine 7
1.2.4 Pseudocode and Time Complexity 8

1.3 Improved Algorithm for 𝑂 (𝑛 log𝑛) Runtime 9
1.4 Removing the Assumption 10

Chapter 2 Median Finding in Linear Time Page 11

2.1 Naive Algorithm 11
2.2 Linear Time Algorithm 11

2.2.1 Solve Rank-Find using Approximate-Split 11
2.2.2 Solve Approximate-Split using Rank-Find 12
2.2.3 Pseudocode and Time Complexity 13

Chapter 3 Polynomial Multiplication Page 14

3.1 Naive Algorithm 14
3.2 Strassen-Schönhage Algorithm 14

3.2.1 Finding Evaluations of Multiplied Polynomial 15
3.2.2 Evaluation of a Polynomial at Points 15
3.2.3 Interpolation from Evaluations at Roots of Unity 16

Chapter 4 Dynamic Programming Page 18

4.1 Longest Increasing Subsequence 18
4.1.1 𝑂 (𝑛2) Time Algorithm 18
4.1.2 𝑂 (𝑛 log𝑛) Time Algorithm 19

4.2 Optimal Binary Search Tree 21

Chapter 5 Greedy Algorithm Page 22

5.1 Maximal Matching 22
5.2 Huffman Encoding 24

5.2.1 Optimal Binary Encoding Tree Properties 24
5.2.2 Algorithm 26

5.3 Matroids 27
5.3.1 Examples of Matroid 28
5.3.2 Finding Max Weight Base 30
5.3.3 Job Selection with Penalties 31

Chapter 6 Dijkstra Algorithm with Data Structures Page 33

6.1 Dijkstra Algorithm 33
6.2 Data Structure 1: Linear Array 35
6.3 Data Structure 2: Min Heap 35

6.3.1 Extracting the Minimum 36
6.3.2 Decreasing Key of a Node 36
6.3.3 Time Complexity Analysis of Dijkstra 37

6.4 Amortized Analysis 37
6.5 Data Structure 3: Fibonacci Heap 38

6.5.1 Inserting Node 38
6.5.2 Union of Fibonacci Heaps 39
6.5.3 Extracting the Minimum Node 39
6.5.4 Decreasing Key of a Node 41
6.5.5 Bounding the Maximum Degree 42
6.5.6 Time Complexity Analysis of Dijkstra 42

Chapter 7 Kruskal’s Algorithm with Data Structures Page 44

7.1 Kruskal’s Algorithm 44
7.2 Data Structure 1: Linear Array 46
7.3 Data Structure 2: Left Child Right Siblings Tree 46

7.3.1 Construction 46
7.3.2 LCRS-Union Function 47
7.3.3 Amortized analysis of LCRS-Union 48
7.3.4 Time Complexity Analysis of Kruskal 48

7.4 Data Structure 3: Union Find 48
7.4.1 Find Operation 48
7.4.2 Union Operation 49
7.4.3 Analyzing the Union-Find Data-Structure 49

Chapter 8 Red Black Tree Data Structure Page 53

8.1 Rotation 54
8.2 Insertion 55
8.3 Deletion 56

Chapter 9 Maximum Flow Page 59

9.1 Flow 59
9.2 Ford-Fulkerson Algorithm 60

9.2.1 Max Flow Min Cut 62
9.2.2 Edmonds-Karp Algorithm 64

9.3 Preflow-Push/Push-Relabel Algorithm 65

Chapter 10 Randomized Algorithm Page 70

10.1 Estimated Binary Search Tree Height 70
10.2 Solving 2-SAT 71

Chapter 11 Derandomization Page 73

11.1 Conditional Expectation 73
11.2 Max-SAT 73

11.2.1 Randomized Algorithm 74
11.2.2 Derandomization 74

11.3 Set Balancing 74
11.3.1 Randomized Algorithm 75
11.3.2 Derandomization 75
11.3.3 Using Pessimistic Estimator to Derandomize 76

Chapter 12 Global Min Cut Page 77

12.1 Naive Algorithm 77
12.2 Karger’s GMC Algorithm 77
12.3 Karger-Stein Algorithm 79

Chapter 13 Matching Page 81

13.1 Bipartite Matching 81
13.1.1 Using Max Flow 81
13.1.2 Using Augmenting Paths 82
13.1.3 Using Matrix Scaling 85

13.2 Matching in General Graphs 88
13.2.1 Flowers and Blossoms 89
13.2.2 Shrinking Blossoms 89
13.2.3 Algorithm for Maximum Matching 90
13.2.4 Tutte-Berge Theorem 91

Chapter 14 Linear Programming Page 93

14.1 Introduction 93
14.2 Geometry of LP 94
14.3 LP Integrality 95

14.3.1 Totally Unimodular Matrix 96
14.3.2 Integrality of Some Well-Known Polytopes 97

14.4 Duality 98
14.4.1 Dualization of LP 98
14.4.2 Weak and Strong Duality 100
14.4.3 Complementary Slackness 100
14.4.4 Max-Flow Min-Cut Theorem 101
14.4.5 Maximum Bipartite Matching minimum Vertex Cover 102

Chapter 15 Approximation Algorithms using LP Page 104

15.1 Set Cover 104
15.1.1 Frequency 𝑓 -Approximation Algorithm 104
15.1.2 Frequency 𝑓 -Approximation Algorithm through Dual Fitting 105
15.1.3 𝑂 (𝑛 log𝑛)-Approximation Algorithm through Randomized Rounding 107

15.2 Makespan Minimization 109
15.2.1 LP Construction 109
15.2.2 Rounding to Get 2-Approximate Solution 110

Chapter 16 P, NP and Reductions Page 112

16.1 Introduction to Complexity Classes 112
16.2 Reductions 113
16.3 Some other NP-complete Languages 114

Chapter 17 Bibliography Page 116

Chapter 1
Finding Closest Pair of Points

Find Closest
Input: Set 𝑆 = {(𝑥𝑖 ,𝑦𝑖) | 𝑥𝑖 ,𝑦𝑖 ∈ R, ∀ 𝑖 ∈ [𝑛]}. We denote 𝑃𝑖 = (𝑥𝑖 ,𝑦𝑖).
Question: Given a set of points find the closest pair of points in R2 find 𝑃𝑖 , 𝑃 𝑗 that are at minimum 𝑙2 distance

i.e. minimize
√︁
(𝑥𝑖 − 𝑥 𝑗)2 + (𝑦𝑖 −𝑦 𝑗)2.

1.1 Naive Algorithm

Now the naive algorithm for this will be checking all pairs of points and take their distance and output the minimum one.
There are total

(
𝑛
2
)
possible choices of pairs of points. And calculating the distance of each pair takes𝑂 (1) time. So it will

take 𝑂 (𝑛2) times to find the closest pair of points.
Idea: ∀ 𝑃𝑖 , 𝑃 𝑗 ∈ 𝑆 find distance 𝑑 (𝑃𝑖 , 𝑃 𝑗) and return the minimum. Time taken is 𝑂 (𝑛2).

1.2 Divide and Conquer Algorithm

Below we will show a Divide and Conquer algorithm which gives a much faster algorithm.

Definition 1.2.1: Divide and Conquer

• Divide: Divide the problem into two parts (roughly equal)

• Conquer: Solve each part individually recursively. If the subproblem sizes are small enough, however, just
solve the subproblems in a straightforward manner.

• Combine: Combine the solutions to the subproblems into the solution.

1.2.1 Divide

So to divide the problem into two roughly equal parts we need to divide the points into two equal sets. That we can do
by sorting the points by their 𝑥−coordinate. Suppose 𝑆𝑥 denote we get the new sorted array or points. And similarly we
obtain 𝑆𝑦 which denotes the array of points after sorting 𝑆 by their 𝑦−coordinate.

Page 7 Chapter 1 Finding Closest Pair of Points

Algorithm 1: Step 1 (Divide)
1 Function Divide:

2 Sort 𝑆 by 𝑥−coordinate and 𝑦−coordinate
3 𝑆𝑥 ←− 𝑆 sorted by 𝑥−coordinate
4 𝑆𝑦 ←− 𝑆 sorted by 𝑦−coordinate
5 𝑥 ←− ⌊𝑛2 ⌋ highest 𝑥−coordinate
6 𝑦 ←− ⌊𝑛2 ⌋ highest 𝑦−coordinate
7 𝑆𝐿 ←− {𝑃𝑖 | 𝑥𝑖 < 𝑥 , ∀ 𝑖 ∈ [𝑛]}
8 𝑆𝑅 ←− {𝑃𝑖 | 𝑥𝑖 ≥ 𝑥 , ∀ 𝑖 ∈ [𝑛]}

𝑦

𝑥

(
𝑃𝑅1 , 𝑃𝑅2

)(
𝑃𝐿1 , 𝑃𝐿2

)

𝑆𝐿 𝑆𝑅

1.2.2 Conquer

Now we will recursively get the pair of closest points in 𝑆𝐿 and 𝑆𝑅 . Suppose the (𝑃𝐿1 , 𝑃𝐿2) are the closest pair of points in
𝑆𝐿 and (𝑃𝑅1 , 𝑃𝑅2) are the closest pair of points in 𝑆𝑅 .
Algorithm 2: Step 1 (Solve Subproblems)
1 Function Conquer:

2 Solve for 𝑆𝐿 , 𝑆𝑅 .
3 (𝑃𝐿1 , 𝑃𝐿2) are the closest pair of points in 𝑆𝐿 .
4 (𝑃𝑅1 , 𝑃𝑅2) are the closest pair of points in 𝑆𝑅 .
5 𝛿𝐿 = 𝑑 (𝑃𝐿1 , 𝑃𝐿2), 𝛿𝑅 = 𝑑 (𝑃𝑅1 , 𝑃𝑅2)
6 𝛿𝑚𝑖𝑛 ←− min{𝛿𝐿 ,𝛿𝑅}

1.2.3 Combine

Now we want to combine these two solutions.

Question 1.1: We are not done

Is there a pair of points 𝑃𝑖 , 𝑃 𝑗 ∈ 𝑆 such that 𝑑 (𝑃𝑖 , 𝑃 𝑗) < 𝛿𝑚𝑖𝑛

If Yes:
• One of them must be in 𝑆𝐿 and the other is in 𝑆𝑅 .

• 𝑥−coordinate ∈ [𝑥 − 𝛿𝑚𝑖𝑛 ,𝑥 + 𝛿𝑚𝑖𝑛].

• |𝑦𝑖 −𝑦 𝑗 | ≤ 𝛿𝑚𝑖𝑛
So we take the strip of radius 𝛿𝑚𝑖𝑛 around 𝑥 . Define 𝑇 = {𝑃𝑖 ∈ 𝑆 | |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛}

𝑦

𝑥

(
𝑃𝑅1 , 𝑃𝑅2

)(
𝑃𝐿1 , 𝑃𝐿2

)

𝑆𝐿 𝑆𝑅

𝑥 + 𝛿𝑚𝑖𝑛𝑥 − 𝛿𝑚𝑖𝑛

We now sort all the points in the𝑇 by their decreasing 𝑦−coordinate. Let𝑇𝑦 be the array of points. For each 𝑃𝑖 ∈ 𝑇𝑦 define
the region

𝑇𝑖 = {𝑃 𝑗 ∈ 𝑇𝑦 | 0 ≤ 𝑦 𝑗 −𝑦𝑖 ≤ 𝛿𝑚𝑖𝑛 , 𝑗 > 𝑖}

1.2 Divide and Conquer Algorithm Page 8

Lemma 1.2.1
Number of points (other than 𝑃𝑖) that lie inside the box is at most 8

Proof: Suppose there are more than 8 points that lie inside the box apart from 𝑃𝑖 .
The box has a left square part and a right square part. So one of the squares contains
at least 5 points. WLOG suppose the left square has at least 5 points. Divide each
square into 4 parts by a middle vertical and a middle horizontal line. Now since there
are 5 points there is one part which contains 2 points, but that is not possible as those
two points are in 𝑆𝐿 and their distance will be less than 𝛿𝑚𝑖𝑛 which is not possible.
Hence, contradiction. Therefore, there are at most 8 points inside the box. ■

Hence by the above lemma for each 𝑃𝑖 ∈ 𝑇𝑦 there are at most 8 points in𝑇𝑖 . So
for each 𝑃 𝑗 ∈ 𝑇𝑖 we find the 𝑑 (𝑃𝑖 , 𝑃 𝑗) and if it is less than 𝛿𝑚𝑖𝑛 we update the points
and the distance

𝛿𝑚𝑖𝑛

𝛿𝑚𝑖𝑛

𝑃𝑖

𝑥

𝑇𝑖

1.2.4 Pseudocode and Time Complexity

Assumption. Wewill assume for now that for all 𝑃𝑖 .𝑃 𝑗 ∈ 𝑆 we have 𝑥𝑖 ≠ 𝑥 𝑗 and𝑦𝑖 ≠ 𝑦 𝑗 . Later we will modify the pseudocode

to remove this assumption

Algorithm 3: Find-Closest(𝑆)
Input: Set of 𝑛 points, 𝑆 = {(𝑥𝑖 ,𝑦𝑖) | 𝑥𝑖 ,𝑦𝑖 ∈ R, ∀ 𝑖 ∈ [𝑛]}. We denote 𝑃𝑖 = (𝑥𝑖 ,𝑦𝑖).
Output: Closest pair of ponts, (𝑃𝑖 , 𝑃 𝑗 ,𝛿) where 𝛿 = 𝑑 (𝑃𝑖 , 𝑃 𝑗)

1 begin

2 if |𝑆 | ≤ 10 then
3 Solve by Brute Force (Consider every pair of points)
4 𝑆𝑥 ←− 𝑆 sorted by 𝑥−coordinate, 𝑆𝑦 ←− 𝑆 sorted by 𝑦−coordinate
5 𝑥 ←− ⌊𝑛2 ⌋ highest 𝑥−coordinate, 𝑦 ←− ⌊𝑛2 ⌋ highest 𝑦−coordinate
6 𝑆𝐿 ←− {𝑃𝑖 | 𝑥𝑖 < 𝑥 , ∀ 𝑖 ∈ [𝑛]}, 𝑆𝑅 ←− {𝑃𝑖 | 𝑥𝑖 ≥ 𝑥 , ∀ 𝑖 ∈ [𝑛]}
7 (𝑃𝐿1 , 𝑃𝐿2 ,𝛿𝐿) ←− Find-Closest(𝑆𝐿), (𝑃𝑅1 , 𝑃𝑅2 ,𝛿𝑅) ←− Find-Closest(𝑆𝑅)
8 𝛿𝑚𝑖𝑛 ←− min{𝛿𝐿 ,𝛿𝑅}
9 if 𝛿𝑚𝑖𝑛 < 𝛿𝐿 then

10 𝑃1 ←− 𝑃𝑅1 , 𝑃2 ←− 𝑃𝑅2
11 else

12 𝑃1 ←− 𝑃𝐿1 , 𝑃2 ←− 𝑃𝐿2
13 𝑇 ←− {𝑃𝑖 | |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛}
14 𝑇𝑦 ←− 𝑇 sorted by decreasing 𝑦−coordinate
15 for 𝑃 ∈ 𝑇𝑦 do
16 𝑈 ←− Next 8 points
17 for 𝑃 ∈ 𝑈 do

18 if 𝑑 (𝑃 , 𝑃) < 𝛿𝑚𝑖𝑛 then
19 𝛿𝑚𝑖𝑛 ←− 𝑑 (𝑃 , 𝑃)
20 (𝑃1, 𝑃2) ←− (𝑃 , 𝑃)

21 return (𝑃1, 𝑃2,𝛿𝑚𝑖𝑛)

Notice we used the assumption in the line 5 for finding the medians. So the line 4 takes 𝑂 (𝑛 log𝑛) times. Lines 5,6 takes
𝑂 (𝑛) time. Since 𝑥 is the median, we have |𝑆𝐿 | = ⌊𝑛2 ⌋ and |𝑆

𝑅 | = ⌈𝑛2 ⌉. Hence Find-Closest(𝑆
𝐿) and Find-Closest(𝑆𝑅)

takes 𝑇
(
𝑛
2
)
time. Now lines 8 − 12 takes constant time. Line 13 takes 𝑂 (𝑛) time. And line 14 takes 𝑂 (𝑛 log𝑛) time. Since

𝑈 has 8 points i.e. constant number of points the lines 16 − 20 takes constant time for each 𝑃 ∈ 𝑇𝑦 . Hence the for loop at

Page 9 Chapter 1 Finding Closest Pair of Points

line 15 takes 𝑂 (𝑛) time. Hence total time taken

𝑇 (𝑛) = 𝑂 (𝑛) +𝑂 (𝑛 log𝑛) + 2𝑇
(𝑛
2

)
=⇒ 𝑇 (𝑛) = 𝑂 (𝑛 log2 𝑛)

1.3 Improved Algorithm for 𝑂 (𝑛 log𝑛) Runtime

Notice once we sort the points by 𝑥−coordinate and 𝑦−coordinate we don’t need to sort the points anymore. We can just
pass the sorted array of points into the arguments for solving the smaller problems. Their is another time where we need
to sort which is in line 14 of the above algorithm. This we can get actually from 𝑆𝑦 without sorting just checking one by
one backwards direction if the 𝑥−coordinate of the points satisfy |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛 . So

𝑇𝑦 = Reverse({𝑃𝑖 ∈ 𝑆𝑦 | |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛})
So we form a new algorithm which takes the input 𝑆𝑥 and 𝑆𝑦 and then finds the closest pair of points. Then we will use
that subroutine to find closest pair of points in any given set of points.

Algorithm 4: Find-Closest-Sorted(𝑆𝑥 , 𝑆𝑦)
Input: Set of 𝑛 points, 𝑆 = {(𝑥𝑖 ,𝑦𝑖) | 𝑥𝑖 ,𝑦𝑖 ∈ R, ∀ 𝑖 ∈ [𝑛]}.

𝑆𝑥 and 𝑆𝑦 are the sorted array of points with
respect to 𝑥−coordinate and 𝑦−coordinate
respectively

Output: Closest pair of ponts, (𝑃𝑖 , 𝑃 𝑗 ,𝛿) where
𝛿 = 𝑑 (𝑃𝑖 , 𝑃 𝑗)

1 begin

2 if |𝑆 | ≤ 10 then
3 Solve by Brute Force
4 𝑥 ←− ⌊𝑛2 ⌋ highest 𝑥−coordinate
5 𝑦 ←− ⌊𝑛2 ⌋ highest 𝑦−coordinate
6 𝑆𝐿 ←− {𝑃𝑖 ∈ 𝑆𝑥 | 𝑥𝑖 < 𝑥 , ∀ 𝑖 ∈ [𝑛]}
7 𝑆𝐿𝑦 ←− {𝑃𝑖 ∈ 𝑆𝑦 | 𝑥𝑖 < 𝑥}
8 𝑆𝑅 ←− {𝑃𝑖 ∈ 𝑆𝑥 | 𝑥𝑖 ≥ 𝑥 , ∀ 𝑖 ∈ [𝑛]}
9 𝑆𝑅𝑦 ←− {𝑃𝑖 ∈ 𝑆𝑦 | 𝑥𝑖 ≥ 𝑥}

10 (𝑃𝐿1 , 𝑃𝐿2 ,𝛿𝐿) ←− Find-Closest-Sorted(𝑆𝐿 , 𝑆𝐿𝑦)
11 (𝑃𝑅1 , 𝑃𝑅2 ,𝛿𝑅) ←− Find-Closest-Sorted(𝑆𝑅 , 𝑆𝑅𝑦)
12 𝛿𝑚𝑖𝑛 ←− min{𝛿𝐿 ,𝛿𝑅}
13 if 𝛿𝑚𝑖𝑛 < 𝛿𝐿 then

14 𝑃1 ←− 𝑃𝑅1 , 𝑃2 ←− 𝑃𝑅2
15 else

16 𝑃1 ←− 𝑃𝐿1 , 𝑃2 ←− 𝑃𝐿2
17 𝑇 ←− {𝑃𝑖 | |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛}
18 𝑇𝑦 ←− Reverse({𝑃𝑖 ∈ 𝑆𝑦 | |𝑥𝑖 − 𝑥 | ≤ 𝛿𝑚𝑖𝑛})
19 for 𝑃 ∈ 𝑇𝑦 do
20 𝑈 ←− Next 8 points
21 for 𝑃 ∈ 𝑈 do

22 if 𝑑 (𝑃 , 𝑃) < 𝛿𝑚𝑖𝑛 then
23 𝛿𝑚𝑖𝑛 ←− 𝑑 (𝑃 , 𝑃)
24 (𝑃1, 𝑃2) ←− (𝑃 , 𝑃)

25 return (𝑃1, 𝑃2,𝛿𝑚𝑖𝑛)

Algorithm 5: Find-Closest(𝑆)
Input: Set of 𝑛 points,

𝑆 = {(𝑥𝑖 ,𝑦𝑖) | 𝑥𝑖 ,𝑦𝑖 ∈ R, ∀ 𝑖 ∈ [𝑛]}.
We denote 𝑃𝑖 = (𝑥𝑖 ,𝑦𝑖).

Output: Closest pair of ponts, (𝑃𝑖 , 𝑃 𝑗 ,𝛿)
where 𝛿 = 𝑑 (𝑃𝑖 , 𝑃 𝑗)

1 begin

2 if |𝑆 | ≤ 10 then
3 Solve by Brute Force
4 𝑆𝑥 ←− 𝑆 sorted by 𝑥−coordinate
5 𝑆𝑦 ←− 𝑆 sorted by 𝑦−coordinate
6 return Find-Closest-Sorted(𝑆𝑥 , 𝑆𝑦)

This algorithm only sorts one time. So time complexity for Find-Closest-Sorted(𝑆𝑥 , 𝑆𝑦) is

𝑇 (𝑛) = 2𝑇
(𝑛
2

)
+𝑂 (𝑛) =⇒ 𝑇 (𝑛) = 𝑂 (𝑛 log𝑛)

and therefore times complexity for Find-Closest(𝑆) is 𝑂 (𝑛 log𝑛).

1.4 Removing the Assumption Page 10

1.4 Removing the Assumption

For this there nothing much to do. For finding the median 𝑥 if we have more than one points with same 𝑥−coordinate
which appears as the

⌊
𝑛
2
⌋
highest 𝑥−coordinate we sort only those points with respect to their 𝑦−coordinate update the

𝑆𝑥 like that and then take
⌊
𝑛
2
⌋
highest point in 𝑆𝑥 . We do the same for 𝑆𝑦 and update accordingly. All this we do so that

𝑆𝐿 and 𝑆𝑅 has the size 𝑛
2 .

Chapter 2
Median Finding in Linear Time

Median Find
Input: Set 𝑆 of 𝑛 distinct integers
Question: Find the

⌊
𝑛
2
⌋𝑡ℎ smallest integer in 𝑆

2.1 Naive Algorithm

The naive algorithm for this will be to sort the array in 𝑂 (𝑛 log𝑛) time then return the
⌊
𝑛
2
⌋𝑡ℎ element. This will take

𝑂 (𝑛 log𝑛) time. But in the next section we will show a linear time algorithm.

2.2 Linear Time Algorithm

In this section we will show an algorithm to find the median of a given set of distinct integers in 𝑂 (𝑛) time complexity.
Consider the following two problems:

Rank-Find (𝑆 ,𝑘)
Input: Set 𝑆 of 𝑛 distinct integers and an integer 𝑘 ≤ 𝑛
Question: Find the 𝑘𝑡ℎ smallest integer in 𝑆

Approximate-Split(𝑆)
Input: Set 𝑆 of 𝑛 distinct integers
Question: Given 𝑆 , return an integer 𝑧 ∈ 𝑆 such that 𝑧 where 𝑟𝑎𝑛𝑘 (𝑧) ∈

[
𝑛
4 ,

3𝑛
4
]

2.2.1 Solve Rank-Find using Approximate-Split

Algorithm 6: Rank-Find(S,k)
Input: Set 𝑆 of 𝑛 distinct integer and 𝑘 ∈ [𝑛]
Output: 𝑘𝑡ℎ smallest integer in 𝑆

1 begin

2 if |𝑆 | ≤ 100 then
3 Sort 𝑆 , return 𝑘𝑡ℎ smallest element in 𝑆

4 𝑧 ←− Approximate-Split(𝑆) (𝑧 is the 𝑟 𝑡ℎ smallest element for some 𝑟 ∈
[
𝑛
4 ,

3𝑛
4
]
)

5 𝑆𝐿 ←− {𝑥 ∈ 𝑆 | 𝑥 ≤ 𝑧}, 𝑆𝑅 ←− {𝑥 ∈ 𝑆 | 𝑥 > 𝑧}
6 if 𝑘 ≤ |𝑆𝐿 | then
7 return Rank-Find(𝑆𝐿 ,𝑘)
8 return Rank-Find(𝑆𝑅 ,𝑘 − |𝑆𝐿 |)

2.2 Linear Time Algorithm Page 12

Certainly if we can solve Rank-Find(𝑆 ,𝑘) for all 𝑘 ∈ [𝑛] we can also solve Median-Find. We will try to use both
the problems and recurse to solve Rank-Find in linear time.

In the above algorithm 𝑟𝑎𝑛𝑘 (𝑧) ∈
[
𝑛
4 ,

3𝑛
4
]
. So 𝑛

4 ≤ |𝑆𝐿 |, |𝑆𝑅 | ≤
3𝑛
4 . For now suppose Rank-Find(𝑆 ,𝑘) takes 𝑇𝑅𝐹 (𝑛)

time and Approximate-Split(𝑆) takes 𝑇𝐴𝑆 (𝑛) time. Then the time taken by the algorithm is

𝑇𝑅𝐹 (𝑛) ≤ 𝑂 (𝑛) +𝑇𝐴𝑆 (𝑛) +𝑇𝑅𝐹
(
3𝑛
4

)
2.2.2 Solve Approximate-Split using Rank-Find

We first divide 𝑆 into groups of 5 elements. So take 𝑡 =
⌈
𝑛
5
⌉
. Now we sort each group. Since each group have constant size

this can be done in 𝑂 (𝑛) time. So now consider the scenario:

After sorting each of the groups we takes the medians of each group. Let 𝑧 be the median of the medians. We claim
that 𝑟𝑎𝑛𝑘 (𝑧) ∈

[
𝑛
4 ,

3𝑛
4
]
.

Algorithm 7: Approximate-Split(𝑆)
Input: Set 𝑆 of 𝑛 distinct integers
Output: An integer 𝑧 ∈ 𝑆 such that 𝑧 where 𝑟𝑎𝑛𝑘 (𝑧) ∈

[
𝑛
4 ,

3𝑛
4
]

1 begin

2 if |𝑆 | ≤ 100 then
3 Sort, return Exact median

4 𝑡 ←−
⌈
𝑛
5
⌉

5 𝑆𝑖 ←− 𝑖𝑡ℎ block of 5 elements in 𝑆 for 𝑖 ∈ [𝑡 − 1]
6 𝑆𝑡 ←−Whatever is left in 𝑆
7 for 𝑖 ∈ [𝑡] do
8 Sort 𝑆𝑖 , Let ℎ𝑖 be the median of 𝑆𝑖
9 𝑇 ←− {ℎ𝑖 | 𝑖 ∈ [𝑡]}

10 return Rank-Find

(
𝑇 ,

⌊
𝑡
2
⌋)

So in the picture among elements in upper left the highest element is 𝑧 and among the elements in lower right the
lowest element is 𝑧. We will show that the number of elements smaller than 𝑧 is between 𝑛

4 and 3𝑛
4 . Lets call the set of

elements in upper left box is 𝑆𝑢 and the set of elements in lower right box is 𝑆𝑑 .

Page 13 Chapter 2 Median Finding in Linear Time

Lemma 2.2.1
|𝑆𝑢 |, |𝑆𝑑 | ≥ 𝑛

4

Proof: |𝑆𝑢 | ≥ 3 ×
⌊
𝑡
2
⌋
. For 𝑛 ≥ 100, 3

⌊
𝑡
2
⌋
> 𝑛

4 . Hence |𝑆𝑢 | ≥
𝑛
4 . Now similarly |𝑆𝑑 | ≥ 3

⌊
𝑡
2 − 1

⌋
≥ 𝑛

4 . ■

Lemma 2.2.2
Number of elements in 𝑆 smaller than 𝑧 lies between 𝑛

4 and 3𝑛
4 .

Proof: Now number of elements in 𝑆 smaller than 𝑧 ≥ |𝑆𝑢 | ≥ 𝑛
4 . The number of elements greater than 𝑧 ≥ |𝑆𝑑 | ≥ 𝑛

4 . So
number of elements in 𝑆 smaller than 𝑧 ≤ 𝑛− number of elements greater than 𝑧 ≤ 𝑛 − 𝑛

4 = 3𝑛
4 . ■

Hence the Approximate-Split(𝑆) takes time

𝑇𝐴𝑆 (𝑛) = 𝑂 (𝑛) +𝑇𝑅𝐹
(𝑛
5

)
2.2.3 Pseudocode and Time Complexity

Hence using Approximate-Split the final algorithm for Rank-Find is the following:

Algorithm 8: Rank-Find(S,k)
Input: Set 𝑆 of 𝑛 distinct integer and 𝑘 ∈ [𝑛]
Output: 𝑘𝑡ℎ smallest integer in 𝑆

1 begin

2 if |𝑆 | ≤ 100 then
3 Sort 𝑆 , return 𝑘𝑡ℎ smallest element in 𝑆

4 𝑡 ←−
⌈
𝑛
5
⌉

5 𝑆𝑖 ←− 𝑖𝑡ℎ block of 5 elements in 𝑆 for 𝑖 ∈ [𝑡 − 1]
6 𝑆𝑡 ←−Whatever is left in 𝑆
7 for 𝑖 ∈ [𝑡] do
8 Sort 𝑆𝑖 , Let ℎ𝑖 be the median of 𝑆𝑖
9 𝑇 ←− {ℎ𝑖 | 𝑖 ∈ [𝑡]}

10 𝑧 ←− Rank-Find
(
𝑇 ,

⌊
𝑡
2
⌋)

11 𝑆𝐿 ←− {𝑥 ∈ 𝑆 | 𝑥 ≤ 𝑧}, 𝑆𝑅 ←− {𝑥 ∈ 𝑆 | 𝑥 > 𝑧}
12 if 𝑘 ≤ |𝑆𝐿 | then
13 return Rank-Find(𝑆𝐿 ,𝑘)
14 return Rank-Find(𝑆𝑅 ,𝑘 − |𝑆𝐿 |)

Replacing 𝑇𝐴𝑆 (𝑛) in the time complexity equation of 𝑇𝑅𝐹 (𝑛) we get the equation:

𝑇𝑅𝐹 (𝑛) ≤ 𝑂 (𝑛) +𝑇𝑅𝐹
(𝑛
5

)
+𝑇𝑅𝐹

(
3𝑛
4

)
Let 𝑇𝑅𝐹 (𝑛) ≤ 𝑘𝑛 + +𝑇𝑅𝐹

(
𝑛
5
)
+𝑇𝑅𝐹

(3𝑛
4
)
. We claim that 𝑇𝑅𝐹 (𝑛) ≤ 𝑐𝑛 for some 𝑐 ∈ N for all 𝑛 ≥ 𝑛0 where 𝑛0 ∈ N. By

induction we have
𝑇𝑅𝐹 (𝑛) ≤ 𝑘𝑛 +

𝑐𝑛

5 +
3𝑐𝑛
4 =

(
𝑘 + 19𝑐20

)
𝑛

To have 𝑘 + 19𝑐
20 ≤ 𝑐 we have to have 𝑘 + 19𝑐

20 ≤ 𝑐 ⇐⇒ 𝑐 ≥ 20𝑘 . So take 𝑐 ≥ 20𝑘 and our claim follows. Hence
𝑇𝑅𝐹 (𝑛) = 𝑂 (𝑛). Since we can find any 𝑘𝑡ℎ smallest number in a given set of distinct integers in linear time we can also
find the median in linear time.

Chapter 3
Polynomial Multiplication

Polynomial Multiplication
Input: Given 2 univariate polynomials of degree 𝑛 − 1 by 2 arrays of their coefficients (𝑎0, . . . ,𝑎𝑛−1) and

(𝑏0, . . . ,𝑏𝑛−1) such that 𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛−1𝑥𝑛−1 and 𝐵(𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑛−1𝑥𝑛−1
respectively

Question: Given 2 polynomials of degree𝑛− 1 find their product polynomial𝐶 (𝑥) = 𝐴(𝑥)𝐵(𝑥) of degree 2𝑛− 2
by returning the array of their coefficients.

3.1 Naive Algorithm

We can do this naively by calculating each coefficient of 𝐶 in 𝑂 (𝑛) time since for any 𝑖 ∈ {0, . . . , 2𝑛 − 2}

𝑐𝑖 =

𝑖∑︁
𝑗=0

𝑎 𝑗𝑏𝑖− 𝑗

Since there are 2𝑛 − 1 = 𝑂 (𝑛) total coefficients of 𝐶 it takes total 𝑂 (𝑛2) time. In the following section we will do this in
𝑂 (𝑛 log𝑛) time.

3.2 Strassen-Schönhage Algorithm

Before diving into the algorithm first let’s consider how many ways we can represent a polynomial. Often changing the
representation helps to solve the problem in less time.

• Coefficients: We can represent a polynomial by giving the array of all its coefficient.

• Point-Value Pairs: We can evaluate the polynomial in distinct 𝑛 points and give all the point-value pairs. This also
uniquely represents a polynomial since there is exactly one polynomial of degree 𝑛 − 1 which passes through all
these points.

Theorem 3.2.1
Given 𝑛 distinct points (𝑥0,𝑦0), . . . , (𝑥𝑛−1,𝑦𝑛−1) in R2 with 𝑥𝑖 ≠ 𝑥 𝑗 for all 𝑖 ≠ 𝑗 there is a unique (𝑛 − 1)−degree
polynomial 𝑃 (𝑥) such that 𝑃 (𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ ⟦𝑛 − 1⟧

Sincewewant to find the polynomial𝐶 (𝑥) = 𝐴(𝑥)𝐵(𝑥) and𝐶 (𝑥) has degree 2𝑛−2, wewill evaluate the polynomials
𝐴(𝑥) and 𝐵(𝑥) in 2𝑛 − 1 distinct points. So we will have the algorithm like this:

Page 15 Chapter 3 Polynomial Multiplication

𝑎0, . . . ,𝑎𝑛−1

𝑏0, . . . ,𝑏𝑛−1

𝐴(𝑥0), . . . ,𝐴(𝑥2𝑛−2)

𝐵(𝑥0), . . . ,𝐵(𝑥2𝑛−2)

𝑐0, . . . , 𝑐2𝑛−2

𝐶 (𝑥0), . . . ,𝐶 (𝑥2𝑛−2)

Coefficient
Representation

Point-Value
Representation
at 2𝑛 − 2 points

3.2.1 Finding Evaluations of Multiplied Polynomial

Suppose we were given 𝐴(𝑥) and 𝐵(𝑥) evaluated at 2𝑛 − 1 distinct points 𝑥0, . . . ,𝑥2𝑛−2. Then we can get 𝐶 (𝑥) evaluated
at 𝑥0, . . . ,𝑥2𝑛−2 by

𝐶 (𝑥𝑖) = 𝐴(𝑥𝑖)𝐵(𝑥𝑖) ∀ 𝑖 ∈ ⟦2𝑛 − 2⟧
Since there are 𝑂 (𝑛) many points and for each point it takes constant time to multiply we can find evaluations of 𝐶 at
𝑥0, . . . ,𝑥2𝑛−2 in 𝑂 (𝑛) time.

3.2.2 Evaluation of a Polynomial at Points

Question 3.1

Suppose there is only one point, 𝑥0. Can we evaluate an 𝑛 − 1 degree polynomial 𝐴(𝑥) =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 at 𝑥0 efficiently?

We can rewrite 𝐴(𝑥) as

𝐴(𝑥) = 𝑎0 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + 𝑥 (𝑎3 + · · · (𝑎𝑛−1 + 𝑥 (𝑎𝑛)) · · ·)))

In this represent it is clear that we have to do 𝑛 additions and 𝑛 multiplications to find 𝐴(𝑥0). Hence, we can evaluate an
𝑛 − 1 degree polynomial at a point in 𝑂 (𝑛) time

But we have 𝑂 (𝑛) points. And if each point takes 𝑂 (𝑛) time to find the evaluation of the polynomial then again it
will take total 𝑂 (𝑛2) time. We are back to square one. So instead we will evaluate the polynomial in some special points,
and we will evaluate in all of them in 𝑂 (𝑛 log𝑛) time. So now the problem we will discuss now is to find some special 𝑛
points where we can evaluate an 𝑛 − 1-degree polynomial in 𝑂 (𝑛 log𝑛) time.
Idea: Evaluate at roots of unity and use Fast Fourier Transform

Assume 𝑛 is a power of 2. We have the polynomial𝐴(𝑥) =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 . So now consider the following two polynomials

𝐴0 (𝑥) = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥2 + · · · + 𝑎𝑛−2𝑥
𝑛
2 −1 𝐴1 (𝑥) = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥2 + · · · + 𝑎𝑛−1𝑥

𝑛
2 −1

Certainly we have
𝐴(𝑥) = 𝐴0 (𝑥2) + 𝑥𝐴1 (𝑥2)

Hence we can get 𝐴(1) and 𝐴(−1) by

𝐴(1) = 𝐴0 (1) +𝐴1 (1) 𝐴(−1) = 𝐴0 (1) −𝐴1 (1)

Hence like this by evaluating two 𝑛
2 − 1 degree polynomials at one point we get evaluation of 𝐴 at two points. More

generally for any 𝑦 ≥ 0 we have

𝐴(√𝑦) = 𝐴0 (𝑦) +
√
𝑦𝐴1 (𝑦) 𝐴(−√𝑦) = 𝐴0 (𝑦) −

√
𝑦𝐴1 (𝑦)

3.2 Strassen-Schönhage Algorithm Page 16

So by recursing like this evaluating at 1,−1 we can get evaluations of 𝐴 at 𝑛𝑡ℎ roots of unity.
Let

𝜔𝑘𝑛 = 𝑛𝑡ℎ root of unity for 𝑘 ∈ ⟦𝑛 − 1⟧ = 𝑒𝑖 𝑘𝑛 2𝜋 = cos
(
𝑘

𝑛
2𝜋

)
+ 𝑖 sin 𝑠

(
𝑘

𝑛
2𝜋

)
Hence we have

𝐴

(
𝜔𝑘𝑛

)
= 𝐴0

(
𝜔2𝑘
𝑛

)
+𝜔𝑘𝑛𝐴1

(
𝜔2𝑘
𝑛

)
= 𝐴0

(
𝜔𝑘𝑛

2

)
+𝜔𝑘𝑛𝐴1

(
𝜔𝑘𝑛

2

)
𝐴

(
−𝜔𝑘𝑛

)
= 𝐴

(
𝜔

𝑛
2 +𝑘
𝑛

)
= 𝐴0

(
𝜔2𝑘
𝑛

)
−𝜔𝑘𝑛𝐴1

(
𝜔2𝑘
𝑛

)
= 𝐴0

(
𝜔𝑘𝑛

2

)
−𝜔𝑘𝑛𝐴1

(
𝜔𝑘𝑛

2

)
Hence now we will solve the following problem:

Recursive-DFT

Input: (𝑎0, . . . ,𝑎𝑛−1) representing (𝑛 − 1)−degree polynomial 𝐴(𝑥) =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖

Question: Find the evaluations of the polynomial 𝐴(𝑥) in all 𝑛𝑡ℎ roots of unity

Since 𝐴0 and 𝐴1 have degree 𝑛
2 − 1 we can use recursion. Hence, the algorithm is

Algorithm 9: Recursive-DFT(𝐴)
Input: 𝐴 = (𝑎0, . . . ,𝑎𝑛−1) such that 𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛−1𝑥𝑛−1
Output: 𝐴(𝑥) evaluated at 𝑛𝑡ℎ roots of unity 𝜔𝑘𝑛 for all 𝑘 ∈ ⟦𝑛 − 1⟧

1 begin

2 if 𝑛 == 1 then
3 return 𝐴[0]
4 𝐴0 ←− (𝐴[0],𝐴[2], . . . ,𝐴[𝑛 − 2])
5 𝐴1 ←− (𝐴[1],𝐴[3], . . . ,𝐴[𝑛 − 1])
6 𝑌 0 ←− Recursive-DFT(𝐴0)
7 𝑌 1 ←− Recursive-DFT(𝐴1)
8 for 𝑘 = 0 to 𝑛

2 − 1 do
9 𝑌 [𝑘] ←− 𝑌 0 [𝑘] +𝜔𝑘𝑛𝑌 1 [𝑘] // 𝐴

(
𝜔𝑘𝑛

)
= 𝐴0

(
𝜔𝑘𝑛

2

)
+𝜔𝑘𝑛𝐴1

(
𝜔𝑘𝑛

2

)
10 𝑌

[
𝑘 + 𝑛2

]
←− 𝑌 0 [𝑘] −𝜔

𝑛
2 +𝑘
𝑛 𝑌 1 [𝑘] // 𝐴

(
−𝜔𝑘𝑛

)
= 𝐴0

(
𝜔𝑘𝑛

2

)
−𝜔𝑘𝑛𝐴1

(
𝜔𝑘𝑛

2

)
11 return Y

Time Complexity: 𝑇 (𝑛) = 2𝑇
(
𝑛
2
)
+𝑂 (𝑛) = 𝑂 (𝑛 log𝑛).

Therefore, we can evaluate an 𝑛 − 1 degree polynomial in all the 𝑛𝑡ℎ roots of unity in𝑂 (𝑛 log𝑛) time. Hence, with
this algorithm we will get evaluations of the polynomial 𝐶 (𝑥) = 𝐴(𝑥)𝐵(𝑥) in all the 2𝑛𝑡ℎ roots of unity. Now we need to
interpolate the polynomial 𝐶 (𝑥) from its evaluations. We will describe the process in the next subsection.

3.2.3 Interpolation from Evaluations at Roots of Unity

In this section we will show how to interpolate an 𝑛 − 1 degree polynomial from evaluations at all 𝑛𝑡ℎ roots of unity.
Previously we had 

𝐶
(
𝜔0
𝑛

)
𝐶

(
𝜔1
𝑛

)
𝐶

(
𝜔2
𝑛

)
...

𝐶
(
𝜔𝑛−1𝑛

)
︸ ︷︷ ︸

𝑌

=



1 𝜔0
𝑛 𝜔0·2 · · · 𝜔0· (𝑛−1)

1 𝜔1
𝑛 𝜔1·2 · · · 𝜔1· (𝑛−1)

1 𝜔2
𝑛 𝜔2·2 · · · 𝜔2· (𝑛−1)

...
...

...
. . .

...
1 𝜔𝑛−1𝑛 𝜔 (𝑛−1) ·2 · · · 𝜔 (𝑛−1) · (𝑛−1)

︸ ︷︷ ︸
𝑉= Vandermonde Matrix



𝑐0
𝑐1
𝑐2
...

𝑐𝑛−1

︸ ︷︷ ︸
𝐶

Now Vandermonde matrix is invertible since all the 𝑛𝑡ℎ roots are distinct. Therefore,𝐶 = 𝑉 −1𝑌 . But we can not do
a matrix inversion to interpolate the polynomial because that will take𝑂 (𝑛2) time. Instead, we have this beautiful result:

Page 17 Chapter 3 Polynomial Multiplication

Lemma 3.2.2(
𝑉 −1

)
𝑗 ,𝑘 = 1

𝑛
𝜔
− 𝑗𝑘
𝑛 for all 0 ≤ 𝑗 ,𝑘 ≤ 𝑛 − 1

Proof: Consider the matrix 𝑛 × 𝑛 matrix 𝑇 such that (𝑇) 𝑗 ,𝑘 = 1
𝑛
𝜔
− 𝑗𝑘
𝑛 . Now we will show 𝑉𝑇 = 𝐼 This will confirm that

𝑉 −1 = 𝑇 . Now

𝑛−1∑︁
𝑘=0
(𝑉)𝑖 ,𝑗 (𝑇) 𝑗 ,𝑘 =

𝑛−1∑︁
𝑘=0

𝜔
𝑖 𝑗
𝑛 ×

1
𝑛
𝜔
− 𝑗𝑘
𝑛 =

1
𝑛

𝑛−1∑︁
𝑘=0

(
𝜔𝑖−𝑘𝑛

) 𝑗
=


1
𝑛

𝑛−1∑︁
𝑘=0

1 = 1 when 𝑖 = 𝑘

1
𝑛

1 −𝜔𝑛𝑛
1 −𝜔 = 0 when 𝑖 ≠ 𝑘

Hence in 𝑉𝑇 there are 1′s on the diagonal and rest of the locations are 0. Hence, 𝑉𝑇 = 𝐼 . So 𝑉 −1 = 𝑇 . ■

Hence, we can see the inverse of the Vandermonde matrix is also a Vandermonde matrix with a scaling factor. We will
denote 𝑦𝑖 = 𝐶

(
𝜔𝑖𝑛

)
for 𝑖 ∈ ⟦𝑛 − 1⟧ since these values are given to us somehow, and we have to find the corresponding

polynomial. Therefore, we have

𝑐0
𝑐1
𝑐2
...

𝑐𝑛−1

︸ ︷︷ ︸
𝐶

=
1
𝑛



1 1 1 · · · 1
1 𝜔−1𝑛 𝜔−1·2 · · · 𝜔−1· (𝑛−1)

1 𝜔−2𝑛 𝜔−2·2 · · · 𝜔−2· (𝑛−1)

...
...

...
. . .

...
1 𝜔

−(𝑛−1)
𝑛 𝜔−(𝑛−1) ·2 · · · 𝜔−(𝑛−1) · (𝑛−1)

︸ ︷︷ ︸
𝑉 −1



𝑦0
𝑦1
𝑦2
...

𝑦𝑛−1

︸ ︷︷ ︸
𝑌

Observation. 𝑛𝑐 𝑗 = 𝑦0 +𝑦1𝜔− 𝑗𝑛 +𝑦2𝜔−2𝑗𝑛 + · · · +𝑦𝑛−1𝜔−(𝑛−1) 𝑗𝑛 for all 𝑗 ∈ ⟦𝑛 − 1⟧.

We can also see this situation as we have the polynomial 𝑌 (𝑥) = 𝑦0 +𝑦1𝑥 +𝑦2𝑥2 + · · · +𝑦𝑛−1𝑥𝑛−1 and 𝑐 𝑗 is just 𝑌 (𝑥)
evaluated as 𝜔− 𝑗𝑛 = 𝜔

𝑛− 𝑗
𝑛 multiplied by 𝑛. Hence, we just re-index the 𝑛𝑡ℎ roots of unity and evaluate 𝑌 𝑛𝑡ℎ roots of unity

in 𝑂 (𝑛 log𝑛) time using the algorithm described in subsection 3.2.2

Chapter 4
Dynamic Programming

Definition 4.1: Dynamic Programming

Dynamic Programming has 3 components:

1. Optimal Substructure: Reduce problem to smaller independent problems

2. Recursion: Use recursion to solve the problems by solving smaller independent problems

3. Table Filling: Use a table to store the result to solved smaller independent problems.

4.1 Longest Increasing Subsequence

Longest Increasing Subseqence
Input: Sequence of distinct integers 𝐴 = (𝑎1, . . . ,𝑎𝑛)
Question: Given an array of distinct integers find the longest increasing subsequence i.e. return maximum

size set 𝑆 ⊆ [𝑛] such that ∀ 𝑖 , 𝑗 ∈ 𝑆 , 𝑖 < 𝑗 =⇒ 𝑎𝑖 < 𝑎 𝑗

4.1.1 𝑂 (𝑛2) Time Algorithm

Given 𝐴 = (𝑎1, . . . ,𝑎𝑛) first we will create a 𝑛-length array where 𝑖𝑡ℎ entry stores the length and longest increasing
subsequence ending at 𝑎𝑖 . Certainly we have the following recursion relation

LIS(𝑘) = 1 + max
𝑗<𝑘 , 𝑎 𝑗<𝑎𝑘

{LIS(𝑗)}

since if a subsequence 𝑆 ⊆ [𝑛] is the longest increasing subsequence ending at 𝑎𝑘 then certainly 𝑆 − {𝑘} is the longest
increasing subsequence which ends at 𝑎 𝑗 < 𝑎𝑘 for some 𝑗 < 𝑘 . Hence, in the table we start with 1st position and using the
recursion relation we fill the table from left. And after the table is filled we look for which entry of the table has maximum
length. So the algorithm will be following:
Algorithm 10: LIS(𝐴)
Input: Sequence of distinct integers 𝐴 = (𝑎1, . . . ,𝑎𝑛)
Output: Maximum size set 𝑆 ⊆ [𝑛] such that ∀ 𝑖 , 𝑗 ∈ 𝑆 , 𝑖 < 𝑗 =⇒ 𝑎𝑖 < 𝑎 𝑗 .

1 begin

2 Create an array 𝑇 of length 𝑛
3 for 𝑖 ∈ [𝑛] do
4 𝑇 [𝑖] [1] ←− 1 +max{𝑇 [𝑗] [1] : 𝑗 < 𝑘 , 𝑎 𝑗 < 𝑎𝑘 } // Finds LIS[𝑖]
5 𝑇 [𝑖] [2] ←− 𝑇

[
𝑇 [𝑖] [1] − 1

]
[2]

6 𝐼𝑛𝑑𝑒𝑥 ←− max{𝑇 [𝑗] [1] : 𝑗 ∈ [𝑛]}
7 return 𝑇 [𝐼𝑛𝑑𝑒𝑥]

Page 19 Chapter 4 Dynamic Programming

Time Complexity: For each iteration of the loop it takes 𝑂 (𝑛) time to find LIS[𝑖]. Hence, the time complexity of this
algorithm is 𝑂 (𝑛2).

4.1.2 𝑂 (𝑛 log𝑛) Time Algorithm

In the following algorithm we update the longest increasing sequence every time we see a new element of the given
sequence. At any time we keep the best available sequence.

Idea. We can make an increasing subsequence longer by picking the smallest number for position 𝑘 so that there is an

increasing subsequence of length 𝑘 . Doing this we can maximize the length of the subsequence.

Theorem 4.1.1
If 𝑆 ⊆ 𝐴 is the longest increasing subsequence of length 𝑡 then for any 𝑘 ∈ [𝑡] the number 𝑆 (𝑘) is the smallest
number in the subarray of 𝐴 starting at first and ending at 𝑆 (𝑘) such that there is an increasing subsequence of
length 𝑘 ending at 𝑆 (𝑘).

Proof: Assume the contrary. Suppose ∃ 𝑘 ∈ [𝑡] such that 𝑘 is the smallest number in [𝑡] such that 𝑆 (𝑘) is not the
smallest number to satisfy the condition. Now denote the subarray of 𝐴 starting at first and ending at 𝑆 (𝑘) by 𝐴𝑘 . Now
let 𝑥 ∈ 𝐴𝑘 be the smallest number in 𝐴𝑘 such that there is an increasing subsequence of length 𝑘 ending at 𝑥 . Certainly
𝑥 < 𝑆 (𝑘) by our assumption. Now since 𝑘 is the smallest index which does not satisfy the given condition, ∀ 𝑗 ∈ [𝑘 − 1],
𝑆 (𝑗) is the smallest number in 𝐴 𝑗 such that there is an increasing subsequence of length 𝑗 ending at 𝑆 (𝑗). Then consider
the subsequence {𝑆 (1), . . . , 𝑆 (𝑘 − 1),𝑥 , 𝑆 (𝑘), 𝑆 (𝑘 + 1), . . . , 𝑆 (𝑡)}. This is an increasing subsequence of 𝐴 and has length
𝑡 + 1. But this contradicts the minimality of 𝑆 . Hence, contradiction E Every element of 𝑆 follows the given condition. ■

So we will construct an increasing subsequence by gradually where each step this property is followed, i.e. at each
step we will ensure that the sequence built at some time have the above property. So now we describe the algorithm.

Algorithm 11: QuickLIS(𝐴)
Input: Sequence of distinct integers 𝐴 = (𝑎1, . . . ,𝑎𝑛)
Output: Maximum size set 𝑆 ⊆ [𝑛] such that ∀ 𝑖 , 𝑗 ∈ 𝑆 , 𝑖 < 𝑗 =⇒ 𝑎𝑖 < 𝑎 𝑗 .

1 begin

2 Create an array 𝑇 of length 𝑛 with all entries 0
3 Create an array𝑀 of length 𝑛
4 for 𝑖 = 1, . . . ,𝑛 do

5 𝑀 [𝑖] ←− ∞
6 for 𝑖 = 1, . . . ,𝑛 do

7 𝑘 ←−Find the smallest index such that𝑀 [𝑘] ≥ 𝑎𝑖 using Binary-Search
8 𝑀 [𝑘] ←− 𝑎𝑖
9 𝑇 [𝑖] ←− 𝑀 [𝑘 − 1] // Pointer to the previous element of the sequence

10 𝑙 ←− Largest 𝑙 such that𝑀 [𝑙] is finite
11 Create an array 𝑆 of length 𝑙
12 for 𝑖 = 𝑙 , . . . , 1 do
13 if 𝑖 = 𝑙 then

14 𝑆 [𝑙] ←− 𝑀 [𝑙]
15 Continue
16 𝑆 [𝑖] ←− 𝑇

[
𝑆 [𝑖 + 1]

]
// 𝑇 [𝑆 [𝑖 + 1]] is pointer to previous value of sequence

17 return (𝑙 , 𝑆)

Time Complexity: To create the arrays and the first for loop takes 𝑂 (𝑛) time. In each iteration of the for loop at line 6
it takes𝑂 (log𝑛) time to find 𝑘 and rest of the operations in the loop takes constant time. So the for loop takes𝑂 (𝑛 log𝑛)
time. Then To find 𝑙 and creating 𝑆 it takes 𝑂 (𝑛) time. Then in the for loop at line 12 in each iteration it takes constant
time. So the for loop at line 12 takes in total 𝑂 (𝑛) time. Therefore, the algorithm takes 𝑂 (𝑛 log𝑛) time.

We will do the proof of correctness of the algorithm now.

4.1 Longest Increasing Subsequence Page 20

Lemma 4.1.2
For any index𝑀 [𝑘] is non-increasing

Proof: Every time we change a value of𝑀 [𝑘] we replace by something smaller. So𝑀 [𝑘] is non-increasing. ■

We denote the state of array𝑀 at 𝑖𝑡ℎ iteration by𝑀𝑖 . Then we have the following lemma:

Lemma 4.1.3
At any time 𝑖 ,𝑀𝑖 [1] < 𝑀𝑖 [2] < · · · < 𝑀𝑖 [𝑛]

Proof: We will prove this by induction on 𝑖 . The base case follows naturally. Now for 𝑖𝑡ℎ iteration suppose 𝑀𝑖−1 [𝑘]
is replaced by 𝑥𝑖 . Then we know ∀ 𝑗 < 𝑘 we have 𝑀𝑖 [𝑗] < 𝑥𝑖 . By inductive hypothesis at time 𝑡 − 1 we have 𝑀 as
an increasing sequence. Now before replacing 𝑀𝑖−1 [𝑘] < 𝑀𝑖−1 [𝑘 + 1] < · · ·𝑀𝑖−1 [𝑛]. Now by Lemma 4.1.2 𝑀𝑖−1 [𝑘] is
nonincreasing. So we still have 𝑀𝑖−1 [1] < · · ·𝑀𝑖−1 [𝑘 − 1] < 𝑥𝑖 < 𝑀𝑖−1 [𝑘 + 1] < · · · < 𝑀𝑖−1 [𝑛]. Therefore, 𝑀𝑖 is an
increasing subsequence. Hence, but mathematical induction it holds. ■

Now suppose at 𝑖𝑡ℎ iteration 𝑘𝑖 is largest such that 𝑀𝑖 [𝑘𝑖] < ∞. Then 𝑆𝑖 denote the set constructed like the way
we constructed at line 12–16 in the algorithm i.e.

𝑆𝑖 [𝑘𝑖] = 𝑀𝑖 [𝑘𝑖] and 𝑆𝑖 [𝑗] = 𝑇 [𝑆𝑖 [𝑗 + 1]] ∀ 𝑗 ∈ [𝑘𝑖 − 1]

Lemma 4.1.4
After any 𝑖𝑡ℎ iteration, for 𝑘 ∈ [𝑛] if𝑀𝑖 [𝑘] < ∞ then 𝑆𝑖 [𝑘] stores the smallest value in 𝑥1, . . . ,𝑥𝑖 such that there is
an increasing subsequence of size 𝑘 that ends in 𝑆𝑖 [𝑘].

Proof: We will use induction on 𝑖 . Base case: This is true after first iteration since only 𝑀1 [1] < ∞. So this naturally
follows.

Suppose this is true after 𝑖 iterations. Now at (𝑖 + 1)𝑡ℎ iteration suppose 𝑡 be the smallest index such that 𝑀𝑖 [𝑡] >
𝑥𝑖+1. Then we have

𝑀𝑖 [1] < · · · < 𝑀𝑖 [𝑡 − 1] < 𝑥𝑖+1 ≤ 𝑀𝑖 [𝑡] < · · · < 𝑀𝑖 [𝑛] =⇒ 𝑆𝑖 [1] < · · · < 𝑆𝑖 [𝑡 − 1] < 𝑥𝑖+1 ≤ 𝑆𝑖 [𝑡], . . . , 𝑆𝑖 [𝑘𝑖]

Now for 𝑘 ≤ 𝑡 − 1 it is true by the inductive hypothesis. For 𝑘 > 𝑡 and if𝑀𝑖+1 [𝑘] < ∞ then 𝑆𝑖+1 [𝑘] is the smallest value in
𝑥1, . . . ,𝑥𝑖+1 such that there is an increasing subsequence of size 𝑘 that ends in 𝑆𝑖+1 [𝑘] since this was true for 𝑖𝑡ℎ iteration.

Now only the case when 𝑘 = 𝑡 is remaining. If 𝑆𝑖+1 [𝑘] does not store the smallest value in 𝑥1, . . . ,𝑥𝑖+1 to have
an increasing subsequence of size 𝑘 ending at 𝑆𝑖+1 [𝑘] then let 𝑥 𝑗 was the smallest value to satisfy this condition where
𝑗 < 𝑖 + 1. Then naturally 𝑥 𝑗 < 𝑥𝑖+1. Then 𝑀𝑖 [𝑡] ≤ 𝑥 𝑗 < 𝑥𝑖+1. But we 𝑡 was the smallest number such that 𝑀𝑖 [𝑡] ≥ 𝑥𝑖+1.
Hence, contradiction. Therefore, 𝑆𝑖 [𝑘] is the smallest value in 𝑥1, . . . ,𝑥𝑖+1 to have an increasing subsequence of size 𝑘
ending at 𝑆𝑖+1 [𝑘]. Therefore, by mathematical induction this is true for all iterations. ■

Theorem 4.1.5
𝑆 is the longest increasing subsequence of 𝐴.

Proof: After the 𝑛𝑡ℎ iteration 𝑆𝑛 = 𝑆 and 𝑘𝑛 = 𝑙 . Hence by Lemma 4.1.4 we can say for all 𝑘 ∈ [𝑙], 𝑆 [𝑘] is the
smallest number such that there is an increasing sequence of length 𝑘 ending at 𝑆 [𝑘]. Now we want to show that this
increasing sequence is the longest increasing subsequence of 𝐴. Suppose 𝑆 is not the longest increasing subsequence.
Let 𝑇 be the longest increasing subsequence of length 𝑡 > 𝑙 . Then suppose 𝑗 ≤ 𝑙 be the smallest index such that
𝑆 [𝑗] ≠ 𝑇 [𝑗]. Now 𝑆 [𝑗] is the smallest number in 𝑥1, . . . ,𝑥𝑛 such that there is an increasing subsequence of length 𝑗

ending at 𝑆 [𝑗]. Hence, we have 𝑆 [𝑗] < 𝑇 [𝑗]. Now for all 𝑖 < 𝑗 we have 𝑆 [𝑖] = 𝑇 [𝑖]. Then we form this new subsequence
𝑇 = {𝑇 [1],𝑇 [2], . . . ,𝑇 [𝑗 − 1], 𝑆 [𝑗],𝑇 [𝑗], . . . ,𝑇 [𝑡]}. Certainly 𝑇 has length 𝑡 + 1 and it is also an increasing subsequence.
But this contradicts the maximal condition of 𝑇 . Hence, 𝑆 is indeed the longest increasing subsequence. ■

Page 21 Chapter 4 Dynamic Programming

4.2 Optimal Binary Search Tree

Optimal BST
Input: A sorted array 𝐴 = (𝑎1, . . . ,𝑎𝑛) of search keys and an array of their probability distributions 𝑃 =

(𝑝 (𝑎1), . . . ,𝑝 (𝑎𝑛))
Question: Given array of keys 𝐴 and their probabilities the probability of accessing 𝑎𝑖 is 𝑝 (𝑎𝑖) then return a

binary tree with the minimum cost where for any binary tree 𝑇 , Cost(𝑇) =
𝑛∑
𝑖=1
𝑝 (𝑎𝑖) · ℎ𝑒𝑖𝑔ℎ𝑡𝑇 (𝑎𝑖).

So let 𝑇 be the optimal binary search tree with 𝑎𝑘 as its root for some 𝑘 ∈ [𝑛]. Let 𝑇𝑙 and 𝑇𝑟 denote the tree rooted
at the left child and right child of 𝑎𝑘 in 𝑇 respectively. Then:

Cost(𝑇) = 𝑝𝑘 +
∑︁
𝑖<𝑘

𝑝𝑖

(
1 +ℎ𝑒𝑖𝑔ℎ𝑡

𝑇𝑙
(𝑎𝑖)

)
+
∑︁
𝑖>𝑘

𝑝𝑖

(
1 +ℎ𝑒𝑖𝑔ℎ𝑡

𝑇𝑟
(𝑎𝑖)

)
=

𝑛∑︁
𝑖=1

𝑝𝑖 +
∑︁
𝑖<𝑘

𝑝𝑖 · ℎ𝑒𝑖𝑔ℎ𝑡𝑇𝑙 (𝑎𝑖)︸ ︷︷ ︸
Cost(𝑇𝑙)

+
∑︁
𝑖>𝑘

𝑝𝑖 · ℎ𝑒𝑖𝑔ℎ𝑡𝑇𝑙 (𝑎𝑖)︸ ︷︷ ︸
Cost(𝑇𝑟)

In general we will use the notation OPTCost(𝑖 ,𝑘) = Cost(𝑇𝑘𝑖) where 𝑇𝑘𝑖 is the optimal binary tree of the subarray
𝐴[𝑖 . . . 𝑘] for any 𝑖 ≤ 𝑘 ≤ 𝑛. Therefore, we arrive at the following recurrence relation

OPTCost(𝑖 ,𝑘) =

0 when 𝑖 > 𝑘
𝑘∑
𝑗=𝑖

𝑝 (𝑎 𝑗) + min
𝑖≤𝑟≤𝑘

{OPTCost(𝑖 , 𝑟 − 1) +OPTCost(𝑟 + 1,𝑘)} otherwise

So the algorithm for constructing the optimal binary search tree is following:

Algorithm 12: OptimalBST(𝐴, 𝑃)
Input: A sorted array 𝐴 = (𝑎1, . . . ,𝑎𝑛) of search keys and an array of their probability distributions

𝑃 = (𝑝 (𝑎1), . . . ,𝑝 (𝑎𝑛))
Output: Binary Tree 𝑇 with the minimum search cost, Cost(𝑇) =

𝑛∑
𝑖=1
𝑝 (𝑎𝑖) · ℎ𝑒𝑖𝑔ℎ𝑡𝑇 (𝑎𝑖)

1 begin

2 for 𝑖 = 1, . . . ,𝑛 do

3 OPTCost[𝑖 , 𝑖] ←− (𝑝 (𝑎𝑖),𝑎𝑖), OPTCost[0, 𝑖] ←− (0,𝑁𝑜𝑛𝑒)
4 for 𝑑 = 2, . . . ,𝑛 do

5 for 𝑖 ∈ [𝑛 + 1 −𝑑] do
6 𝑚𝑖𝑛𝑣𝑎𝑙 ←− 0
7 for 𝑘 = 𝑖 + 1, . . . , 𝑖 +𝑑 − 2 do
8 𝑛𝑒𝑤𝑣𝑎𝑙 ←− OPTCost[𝑖 ,𝑘 − 1] [1] +OPTCost[𝑘 + 1, 𝑖 +𝑑 − 1] [1]
9 if 𝑚𝑖𝑛𝑣𝑎𝑙 > 𝑛𝑒𝑤𝑣𝑎𝑙 then

10 𝑚𝑖𝑛𝑣𝑎𝑙 ←− 𝑛𝑒𝑤𝑣𝑎𝑙
11 𝐼𝑛𝑑𝑒𝑥 ←− 𝑘

12 OPTCost[𝑖 , 𝑖 +𝑑 − 1] ←−
(
𝑚𝑖𝑛𝑣𝑎𝑙 +

𝑖+𝑑−1∑
𝑘=1

𝑝 (𝑎𝑘),𝑘
)

13 𝑎𝑘 .𝑙𝑒 𝑓 𝑡 ←− OPTCost[𝑖 ,𝑘 − 1] [2]
14 𝑎𝑘 .𝑟𝑖𝑔ℎ𝑡 ←− OPTCost[𝑘 + 1, 𝑖 +𝑑 − 1] [2]

15 return OPTCost[1,𝑛]

Time Complexity: To two for loops at line 4 and line 5 takes 𝑂 (𝑛2) many iterations. Now the innermost for loop at
line 7 runs𝑂 (𝑛) iterations where in each iteration it takes constant runtime. So the total running time of the algorithm is
𝑂 (𝑛3).

Chapter 5
Greedy Algorithm

5.1 Maximal Matching

Maximal Matching
Input: Graph 𝐺 = (𝑉 ,𝐸)
Question: Find a maximal matching𝑀 ⊆ 𝐸 of 𝐺

Before diving into the algorithm to find a matching or maximal matching we first define what is a matching.

Definition 5.1.1: Matching

Given a graph 𝐺 = (𝑉 ,𝐸), 𝑀 ⊆ 𝐸 is said to be a matching if 𝑀 is an independent set of edges i.e. no two edges of
𝑀 are incident on same vertex.

Definition 5.1.2: Maximal Matching

For a graph 𝐺 = (𝑉 ,𝐸) a matching𝑀 ⊆ 𝐸 is maximal if it cannot be extended and still by adding an edge.

There is also a maximum matching which can be easily understood from the name:

Definition 5.1.3: MaximumMatching

For a graph 𝐺 = (𝑉 ,𝐸) a matching 𝑀 ⊆ 𝐸 is maximum if it is maximal and has the maximum size among all the
maximal matchings.

Idea. The idea is to create a maximal matching we will just go over each edge one by one and check if after adding them to

the set𝑀 the matching property still holds.

Algorithm 13: Maximal-Matching
Input: Graph 𝐺 = (𝑉 ,𝐸)
Output: Maximal Matching𝑀 ⊆ 𝐸 of 𝐺

1 begin

2 𝑀 ←− ∅
3 Order the edges 𝐸 = {𝑒1, . . . , 𝑒𝑘 } arbitrarily
4 for 𝑒 ∈ 𝐸 do

5 if 𝑀 ∪ {𝑢} is matching then

6 𝑀 ←− 𝑀 ∪ {𝑒}

7 return𝑀

Page 23 Chapter 5 Greedy Algorithm

Question 5.1

Do we always get the largest possible matching?

Solution: Clearly algorithm output is not optimal always. We get a maximal matching sure. But we don’t get a maximum
matching always. For example the following graph

𝑒1 𝑒3 𝑒2

If we start from 𝑒1 we get the matching {𝑒1.𝑒2} which is maximum matching but if we start from 𝑒3 then we get only the
maximal matching {𝑒3} which is not maximum. ■

Since the algorithm output may not be optimal always we can ask the following question

Question 5.2

How large is the matching obtained compared to the maximum matching?

This brings us to the following result:

Theorem 5.1.1
For any graph 𝐺 let the greedy algorithm obtains the matching𝑀 and the maximum matching is𝑀★. Then

|𝑀 | ≥ 1
2 |𝑀

★ |

Proof: Consider an edge 𝑒 ∈ 𝑀★ but 𝑒 ∉ 𝑀 . Since 𝑒 wasn’t picked in 𝑀 , ∃ 𝑒′ ∈ 𝑀 \𝑀★ such that 𝑒 and 𝑒′ are incident
on same vertex. Thus define the function 𝑓 : 𝑀★→ 𝑀 where

𝑓 (𝑒) =
{
𝑒 when 𝑒 ∈ 𝑀
𝑒′ when 𝑒 ∈ 𝑀★ \𝑀 where 𝑒′ ∈ 𝑀 \𝑀★ such that 𝑒′ ∩ 𝑒 ≠ ∅

Now note that there are at most two edges in 𝑀★ that are adjacent to an edge 𝑒′ ∈ 𝑀 which will be mapped to 𝑒′.
Hence,

|𝑀 \𝑀★ | ≥ 1
2 |𝑀

★ \𝑀 |

Therefore |𝑓 −1 (𝑒′) | ≤ 2 ∀ 𝑒′ ∈ 𝑀 . Hence,

|𝑀★ | = |𝑀 ∩𝑀★ | + |𝑀★ \𝑀 | ≤ |𝑀 ∩𝑀★ | + 2|𝑀 \𝑀★ | ≤ 2|𝑀 |

Therefore we have the result |𝑀 | ≥ 1
2 |𝑀

★ |. ■

Alternate Proof : Let𝑀1 and𝑀2 are two matchings. Consider the symmetric difference𝑀1△𝑀2. This consists of edges
that are in exactly one of𝑀1 and𝑀2. Now in𝑀△𝑀★ we have the following properties:
(a) Every vertex in𝑀△𝑀★ has degree ≤ 2 =⇒ Each component is a path or an even cycle.

(b) The edges of𝑀 and𝑀★ alternate.
Now we will prove the following property about the connected components of𝑀△𝑀★.

Claim 5.1.1
No connected component is a single edge.

Proof: This is because let 𝑒 be a connected component. So the two edges 𝑒1, 𝑒2 which are adjacent to 𝑒 , they
are either in both𝑀 and𝑀★ or not in𝑀 and𝑀★. The former case is not possible because then 𝑒1, 𝑒2, 𝑒 are all
in either 𝑀 or 𝑀★ which is not possible as they do not satisfy the condition of matching. For the later case
let 𝑒 ∈ 𝑀★. Then 𝑒 ∉ 𝑀 . That means 𝑒 , 𝑒1, 𝑒2 ∉ 𝑀 which is not possible since 𝑀 is also a maximum matching.
By similar reasoning if 𝑒 ∈ 𝑀 and 𝑒 ∉ 𝑀★ then also an impossible event occurs. Therefore, no connected
component is a single edge. ■

5.2 Huffman Encoding Page 24

Therefore, every path has length ≥ 2. Therefore, ratio of # edges of 𝑀 to # edges of 𝑀★ in a path is ≤ 2. And
for cycles we have # edges of 𝑀 = # edges of 𝑀★. So in every connected component 𝐶 of 𝑀△𝑀★ the ratio |𝑀

★∩𝐶 |
|𝑀∩𝐶 | ≤ 2.

Therefore, we have

|𝑀★ |
|𝑀 | =

|𝑀 ∩𝑀★ | +∑
𝐶

|𝑀★ ∩𝐶 |

|𝑀 ∩𝑀★ | +∑
𝐶

|𝑀 ∩𝐶 | ≤ 2

Hence we have |𝑀 | ≥ 1
2 |𝑀

★ |.
■

5.2 Huffman Encoding

Huffman Coding
Input: 𝑛 symbols 𝐴 = (𝑎 − 1, . . . ,𝑎𝑛) and their frequencies 𝑃 = (𝑓1, . . . , 𝑓𝑛) of using symbols
Question: Create a binary encoding such that:

• Prefix Free: The code for one word can not be prefix for another code
• Minimality: Minimize Cost(𝑏) =

𝑛∑
𝑖=1
𝑓𝑖 · Len(𝑏 (𝑎𝑖)) where 𝑏 : 𝐴 → {0, 1}∗ is the binary

encoding

Assignment of binary strings can also be scene as placing the symbols in a binary tree where at any node 0 means
left child and 1 means right child. Then the first condition implies that there can not be two codes which lies in the same
path from the root to a leaf. I.e. it means that all the codes have to be in the leaves. Then the length of the binary coding
for a symbol is the height of the symbol in the binary tree.

We can think the frequencies as the probability of appearing for a letter. We denote the probability of appearing of
the letter 𝑎𝑖 by 𝑝 (𝑎𝑖) B 𝑓𝑖

𝑛∑
𝑖=1
𝑓𝑖

. So the we can see the updated cost function

Cost(𝑏) =
𝑛∑︁
𝑖=1

𝑝 (𝑎𝑖) · Len(𝑏 (𝑎𝑖))

And from now on we will see the frequencies as probabilities and cost function like this

5.2.1 Optimal Binary Encoding Tree Properties

Then our goal is to finding a binary tree with minimum cost where all the symbols are at the leaves. We have the following
which establish the optimality of Huffman encoding over all prefix encodings where each symbol is assigned a unique
string of bits.

Lemma 5.2.1
In the optimal encoding tree least frequent element has maximum height.

Proof: Suppose that is not the case. Let𝑇 be the optimal encoding tree and let the least frequent element 𝑥 is at height
ℎ1 and the element with the maximum height is 𝑦 with height ℎ2 and we have ℎ1 < ℎ2. Then we construct a new encoding
tree 𝑇 ′ where we swap the positions of 𝑥 and 𝑦. So in 𝑇 ′ height of 𝑦 is ℎ1 and height of 𝑥 is ℎ2. Then

Cost(𝑇) − Cost(𝑇 ′) = (𝑝 (𝑥)ℎ1 + 𝑝 (𝑦)ℎ2) − (𝑝 (𝑥)ℎ2 + 𝑝 (𝑦)ℎ1) = (𝑝 (𝑥) − 𝑝 (𝑦)) (ℎ1 −ℎ2)

Since 𝑝 (𝑥) < 𝑝 (𝑦) and ℎ1 < ℎ2 we have Cost(𝑇) −Cost(𝑇 ′) > 0. But that is not possible since𝑇 is the optimal encoding
tree. So 𝑇 should have the minimum cost. Hence contradiction. 𝑥 has the maximum height. ■

Page 25 Chapter 5 Greedy Algorithm

Lemma 5.2.2
The optimal encoding binary tree must be complete binary tree. (i.e. every non-leaf node has exactly 2 children)

Proof: Suppose 𝑇 be the optimal binary tree and there is a non-leaf node 𝑟 which has only one child at height ℎ. By
Lemma 5.2.1 the least frequent element 𝑥 has the maximum height, ℎ𝑚 .

Then consider the new tree 𝑇 where we place the least frequent element at height ℎ and make it the second child
of the node 𝑟 . Then

Cost(𝑇) − Cost(𝑇) = 𝑝 (𝑥)ℎ𝑚 − 𝑝 (𝑥)ℎ = 𝑝 (𝑥) (ℎ𝑚 −ℎ) > 0

But this is not possible as 𝑇 is the optimal binary tree and it has the minimal cost. Hence contradiction. Therefore the
optimal encoding binary tree must be a complete binary tree. ■

Lemma 5.2.3
There is an optimal binary encoding tree such that the least frequent element and the second least frequent element
are siblings at the maximum height.

Proof: Let𝑇 be optimal binary encoding tree. Suppose 𝑥 , 𝑦 are the least frequent element and the second least frequent
element. And suppose 𝑏, 𝑐 be two siblings at the maximum height of the tree (There may be many such siblings, and if
so pick any such pair.). If {𝑥 ,𝑦} = {𝑏, 𝑐} we are done. So suppose not. Let the frequencies of 𝑥 ,𝑦,𝑏, 𝑐 are respectively
𝑝 (𝑥),𝑝 (𝑦),𝑝 (𝑏),𝑝 (𝑐) and heights of 𝑥 ,𝑦,𝑏 are ℎ𝑥 ,ℎ𝑦 and ℎ respectively. WLOG assume 𝑝 (𝑥) ≤ 𝑝 (𝑦) and 𝑝 (𝑏) ≤ 𝑝 (𝑐).

Now since we know 𝑥 ,𝑦 have the smallest frequencies we have 𝑝 (𝑥) ≤ 𝑝 (𝑏) and 𝑝 (𝑦) ≤ 𝑝 (𝑐). And since 𝑏, 𝑐 have
the maximum height we have ℎ𝑥 ,ℎ𝑦 ≤ ℎ. So we switch the position of 𝑥 with 𝑏 to form the new tree 𝑇 ′. And from 𝑇 ′ we
swap the positions fo 𝑦 and 𝑐 to form a new tree 𝑇 ′′.

𝑦

𝑐 𝑏

𝑥

𝑇

𝑦

𝑐 𝑥

𝑏

𝑇 ′

𝑐

𝑦 𝑥

𝑏

𝑇 ′′

Figure 5.1: Showing that the lowest probability nodes are siblings at the tree’s lowest level.

Now we will calculate how the cost changes as we go from 𝑇 to 𝑇 ′ and 𝑇 ′ to 𝑇 ′′. First check for 𝑇 → 𝑇 ′. Almost
all the nodes contribute the same except 𝑥 ,𝑏. So we have

Cost(𝑇) − Cost(𝑇 ′) = (ℎ𝑥 · 𝑝 (𝑥) +ℎ · 𝑝 (𝑏)) − (ℎ𝑥 · 𝑝 (𝑏) +ℎ · 𝑝 (𝑥)) = (𝑝 (𝑏) − 𝑝 (𝑥)) (ℎ −ℎ𝑥) ≥ 0

Therefore swapping 𝑥 and 𝑏 does not increase the cost and since 𝑇 is the optimal binary encoding tree the cost doesn’t
decrease either. Therefore the costs are equal. Hence 𝑇 ′ is also an optimal tree.

Similarly we calculate cost for going from 𝑇 ′ to 𝑇 ′′ we have

Cost(𝑇 ′) − Cost(𝑇 ′′) = (ℎ𝑦 · 𝑝 (𝑦) +ℎ · 𝑝 (𝑐)) − (ℎ𝑦 · 𝑝 (𝑐) +ℎ · 𝑝 (𝑦)) = (𝑝 (𝑐) − 𝑝 (𝑦)) (ℎ −ℎ𝑦) ≥ 0

Therefore swapping𝑦 and 𝑐 also does not increase the cost and since𝑇 ′ is the optimal binary encoding tree the cost doesn’t
decrease either. Therefore the costs are equal. Hence 𝑇 ′′ is also an optimal tree. Hence 𝑇 ′′ is the optimal tree where the
least frequent element and second last frequent element are siblings. ■

By the Lemma 5.2.2 and Lemma 5.2.3 we have that the least frequent element and the second least frequent element
are siblings, and they have the maximum height.

5.2 Huffman Encoding Page 26

Theorem 5.2.4
Given an instance with symbols I:

𝑎1, 𝑎2, · · · , 𝑎𝑖 , · · · , 𝑎 𝑗 , · · · , 𝑎𝑛 with probabilities
𝑝 (𝑎1), 𝑝 (𝑎2), · · · , 𝑝 (𝑎𝑖), · · · , 𝑝 (𝑎 𝑗), · · · , 𝑝 (𝑎𝑛)

such that 𝑎𝑖 , 𝑎 𝑗 are the least frequent and second least frequent elements respectively. Consider the instance with
𝑛 − 1 symbols I′:

𝑎1, 𝑎2, · · · , 𝑎𝑖−1, 𝑎𝑖+1, · · · , 𝑎 𝑗−1, 𝑎 𝑗+1, · · · , 𝑎𝑛 , 𝑧

𝑝 (𝑎1), 𝑝 (𝑎2), · · · , 𝑝 (𝑎𝑖−1), 𝑝 (𝑎𝑖+1) · · · , 𝑝 (𝑎 𝑗−1), 𝑝 (𝑎 𝑗+1), · · · , 𝑝 (𝑎𝑛), 𝑝 (𝑎𝑖) + 𝑝 (𝑎 𝑗)

Let 𝑇 ′ be the optimal tree for this instance I′. Then there is an optimal tree for the original instance I obtained
from 𝑇 ′ by replacing the leaf of 𝑏 by an internal node with children 𝑎𝑖 and 𝑎 𝑗 .

Proof: We will prove this by contradiction. Suppose 𝑇 is optimal for I. Then Cost(𝑇) < Cost(𝑇). In 𝑇 we know 𝑎𝑖
and 𝑎 𝑗 are siblings by Lemma 5.2.3. Now consider𝑇 ′ for instance I′ where we merge 𝑎𝑖 ,𝑎 𝑗 leaves and their parent into a
leaf for symbol 𝑧.

𝑎𝑖 𝑎 𝑗

𝑇

𝑧

𝑇 ′

Then
Cost(𝑇 ′) = Cost(𝑇) − 𝑝 (𝑎𝑖) − 𝑝 (𝑎 𝑗) < Cost(𝑇) − 𝑝 (𝑎𝑖) − 𝑝 (𝑎 𝑗) = Cost(𝑇 ′)

This contradicts the fact that 𝑇 ′ is optimal binary encoding tree for I′. Hence 𝑇 is optimal. ■

5.2.2 Algorithm

Idea: We are going to build the tree up from the leaf level. We will take two characters 𝑥 ,𝑦, and “merge” them into a
single character, 𝑧, which then replaces 𝑥 and𝑦 in the alphabet. The character 𝑧 will have probability equal to the sum of 𝑥
and𝑦’s probabilities. Thenwe continue recursively building the code on the new alphabet, which has one fewer character.

Since we always need the least frequent element and the second least frequent element we have to use the data
structure called Min-PriorityQueue. So the following algorithm uses a Min-PriorityQueue 𝑄 keyed on the probabil-
ities to identify the two least frequent objects.
Time Complexity: To create the priority queue it takes 𝑂 (𝑛) time in line 4-5. Then for each iteration of the for loop in
line 6 the Extract-Min operation takes 𝑂 (log𝑛) time and then to insert an element it also takes 𝑂 (log𝑛) time. Hence
each iteration takes𝑂 (log𝑛) time. Since the for loop has 𝑛 − 1 = 𝑂 (𝑛) many iterations the running time for the algorithm
is 𝑂 (𝑛 log𝑛).
Remark: We can reduce the running time to𝑂 (𝑛 log log𝑛) by replacing the binary min-heap with a van Emde Boas tree.

Page 27 Chapter 5 Greedy Algorithm

Algorithm 14: Huffman-Encoding(𝐴, 𝑃)
Input: Set of 𝑛 symbols 𝐴 = {𝑎1, . . . ,𝑎𝑛} and their probabilities 𝑃 = {𝑝1, . . . ,𝑝𝑛}
Output: Optimal Binary Encoding 𝑏 : 𝐴→ {0, 1}∗ for 𝐴 with minimum Cost(𝑏) =

𝑛∑
𝑖=1
𝑝 (𝑎𝑖) · Len(𝑏 (𝑎𝑖)).

1 begin

2 𝑛 ←− |𝐴|
3 𝑄 ←−Min-PriorityQueue
4 for 𝑥 ∈ 𝐴 do

5 Insert(𝑄 ,𝑥)
6 for 𝑖 = 1, . . . 𝑛 − 1 do
7 𝑧 ←− New internal tree node
8 𝑥 ←− Extract-Min(𝑄), 𝑦 ←− Extract-Min(𝑄)
9 𝑙𝑒 𝑓 𝑡 [𝑧] ←− 𝑥 , 𝑟𝑖𝑔ℎ𝑡 [𝑧] ←− 𝑦

10 𝑝 (𝑧) ←− 𝑝 (𝑥) + 𝑝 (𝑦)
11 Insert(𝑄 , 𝑧)
12 return Last element left in 𝑄 as root

Theorem 5.2.5 Correctness of Huffman’s Algorithm

The above Huffman’s algorithm produces an optimal prefix code tree

Proof: Wewill prove this by induction on 𝑛, the number of symbols. For base case 𝑛 = 1. There is only one tree possible.
For 𝑛 = 𝑘 we know that by Lemma 5.2.3 and Lemma 5.2.1 that the two symbols 𝑥 and 𝑦 of lowest probabilities are siblings
and they have the maximum height. Huffman’s algorithm replaces these nodes by a character 𝑧 whose probability is the
sum of their probabilities. Now we have 1 less symbols. So by inductive hypothesis Huffman’s algorithm computes the
optimal binary encoding tree for the 𝑘 − 1 symbols. Call it 𝑇𝑛−1. Then the algorithm replaces 𝑧 with a parent node with
children 𝑥 and 𝑦 which results in a tree 𝑇𝑛 whose cost is higher by a fixed amount 𝑝 (𝑧) = 𝑝 (𝑥) + 𝑝 (𝑦). Now since 𝑇𝑛−1 is
optimal by Theorem 5.2.4 we have 𝑇𝑛 is also optimal. ■

5.3 Matroids

Definition 5.3.1: Matroid

A matroid𝑀 = (𝐸,I) has a ground set 𝐸 and a collection 𝐼 of subsets of 𝐸 called the Independent Sets st

1. Downward Closure: If 𝑌 ∈ I then ∀ 𝑋 ⊆ 𝑌 , 𝑋 ∈ I.

2. Exchange Property: If 𝑋 ,𝑌 ∈ I, |𝑋 | < |𝑌 | then ∃ 𝑒 ∈ 𝑌 −𝑋 such that 𝑋 ∪ {𝑒} also written as 𝑋 + 𝑒 ∈ I

An element 𝑥 ∈ 𝐸 extends 𝐴 ∈ I if 𝐴 ∪ {𝑥} ∈ I. And 𝐴 is maximal if no element can extend 𝐴.

Lemma 5.3.1
If 𝐴,𝐵 are maximal independent set, then |𝐴| = |𝐵 | i.e. all maximal independent sets are also maximum

Proof: Suppose |𝐴| ≠ |𝐵 |. WLOG assume |𝐴| > |𝐵 |. Then by the exchange property ∃ 𝑒 ∈ 𝐴 − 𝐵 such that 𝐵 ∪ {𝑒} ∈ I.
But we assumed that 𝐵 is maximal independent set. Hence contradiction. We have |𝐴| = |𝐵 |. ■

Base: Maximal Independent sets are called bases.
Rank of 𝑺 ∈ 𝑰 : max{|𝑋 | : 𝑋 ⊆ 𝑆 ,𝑋 ∈ 𝐼 }
Rank of a Matroid: Size of the base.
Span of 𝑺 ∈ 𝑰 : {𝑒 ∈ 𝐸 : 𝑟𝑎𝑛𝑘 (𝑆) = 𝑟𝑎𝑛𝑘 (𝑆 + 𝑒)}

5.3 Matroids Page 28

5.3.1 Examples of Matroid

• Uniform Matroid: Given 𝐸 = {𝑒1, . . . , 𝑒𝑛}, and 𝑘 ∈ Z0 take I = {𝑆 ⊆ 𝐸 : |𝑆 | ≤ 𝑘}

Lemma 5.3.2
𝑀 = (𝐸,I) defined as above is a matroid

Proof:

1 Downward Closure: 𝐴 ∈ I, 𝐵 ⊆ 𝐴 =⇒ |𝐵 | ≤ 𝑘 =⇒ 𝐵 ∈ I
2 Exchange Property: 𝐴,𝐵 ∈ I, |𝐵 | < |𝐴| ≤ 𝑘 =⇒ |𝐵 | < 𝑘 =⇒ ∀ 𝑒 ∈ 𝐴 − 𝐵, |𝐵 ∪ {𝑒}| ≤ 𝑘 =⇒ 𝐵 ∪ {𝑒} ∈ I

Therefore𝑀 is a matroid ■

• Partition Matroid: Given 𝐸, {𝑃1, . . . , 𝑃𝑙 } such that 𝐸 =
𝑙.
𝑖=1
𝑃𝑖 and 𝑘1, . . . ,𝑘𝑙 ∈ Z0 then take

I = {𝑆 ⊆ 𝐸 : ∀ 𝑘 ∈ [𝑙], |𝑆 ∩ 𝑃 𝑗 | ≤ 𝑘 𝑗 }

Lemma 5.3.3
𝑀 = (𝐸,I) defined as above is a matroid

Proof:

1 Downward Closure: 𝐴 ∈ I, 𝐵 ⊆ 𝐴 =⇒ ∀ 𝑗 ∈ [𝑙] |𝐵 ∩ 𝑃 𝑗 | ≤ |𝐴 ∩ 𝑃 𝑗 | ≤ 𝑘 𝑗 =⇒ 𝐵 ∈ I
2 Exchange Property: 𝐴,𝐵 ∈ I, |𝐵 | < |𝐴| =⇒ ∃ 𝑗 ∈ [𝑙], |𝐵 ∩ 𝑃 𝑗 | < |𝐴 ∩ 𝑃 𝑗 | ≤ 𝑘 𝑗 =⇒ 𝑒 ∈ (𝐴 ∩ 𝑃 𝑗) −
(𝐵 ∩ 𝑃 𝑗), | (𝐵 ∪ {𝑒}) ∩ 𝑃 𝑗 | = |𝐵 ∩ 𝑃 𝑗 | + 1 ≤ 𝑘 =⇒ 𝐵 ∪ {𝑒} ∈ I

Therefore𝑀 is a matroid ■

• Laminar Matroid: Given 𝐸, L = {𝐿1, . . . ,𝐿𝑙 } is a laminar family i.e. ∀ 𝑖 , 𝑗 ∈ [𝑙], either 𝐿𝑖 ⊆ 𝐿 𝑗 or 𝐿𝑖 ⊇ 𝐿 𝑗 or
𝐿𝑖 ∩ 𝐿 𝑗 = ∅ and also given 𝑘1, . . . ,𝑘𝑙 ∈ Z0. Then take

I = {𝑆 ⊆ 𝐸 : ∀ 𝑗 ∈ [𝑙], |𝑆 ∩ 𝐿 𝑗 | ≤ 𝑘 𝑗 }

For any 𝐿 ∈ L we denote 𝑘 (𝐿) be the given number corresponding to 𝐿.

Lemma 5.3.4
𝑀 = (𝐸,I) defined as above is a matroid

Proof:

1 Downward Closure: 𝐴 ∈ I, 𝐵 ⊆ 𝐴 =⇒ ∀ 𝑗 ∈ [𝑙] |𝐵 ∩ 𝐿 𝑗 | ≤ |𝐴 ∩ 𝐿 𝑗 | ≤ 𝑘 𝑗 =⇒ 𝐵 ∈ I
2 Exchange Property: Let 𝐴,𝐵 ∈ I with |𝐵 | < |𝐴|. If there exists 𝑒 ∈ 𝐴\𝐵 such that 𝑒 ∉ 𝐿 for any 𝐿 ∈ L , then
| (𝐵 + 𝑒) ∩ 𝐿 | = |𝐵 ∩ 𝐿 | ≤ 𝑘 (𝐿) for any 𝐿 ∈ L .

Hence assume that for each 𝑒 ∈ 𝐴\𝐵 there exists 𝐿 ∈ L with 𝑒 ∈ 𝐿. For each 𝑒 ∈ 𝐴\𝐵, let L𝑒 be the
collection of 𝐿 ∈ L with 𝑒 ∈ 𝐿. For each 𝑒 ∈ 𝐴\𝐵 and any 𝐿 ∈ L \L𝑒 , we have | (𝐵 + 𝑒) ∩ 𝐿 | = |𝐵 ∩ 𝐿 | ≤ 𝑘 (𝐿).

Hence it remains to show that there exists 𝑒 ∈ 𝐴\𝐵 such that | (𝐵 + 𝑒) ∩ 𝐿 | ≤ 𝑘 (𝐿) for any 𝐿 ∈ L𝑒 . Note
that L𝑒 is a chain, as L is a laminar. Let L ′ = {𝐿𝑒1 , . . . ,𝐿𝑒𝑙 } be the collection of inclusion-wise maximal sets
in L such that |𝐵 ∩ 𝐿𝑒𝑖 | ≤ 𝑘 (𝐿𝑒𝑖) with 𝑒𝑖 ∈ 𝐴\𝐵. Then 𝐿𝑒𝑖 ∩ 𝐿𝑒 𝑗 = ∅. Moreover, |𝐴| > |𝐵 | and |𝐴∩ 𝐿𝑒𝑖 | ≤ 𝑘 (𝐿𝑒𝑖)
imply that |𝐴\(∪𝐿𝑒𝑖) | > |𝐵\(∪𝐿𝑒𝑖) |. Hence there ∃ 𝑒𝑖 such that |𝐴 ∩ 𝐿𝑒𝑖 | > |𝐵 ∩ 𝐿𝑒𝑖 |.

Now we take a look at the chain L𝑒𝑖 . For brevity we will use 𝑒 instead of 𝑒𝑖 . So in the chain L𝑒 =

{𝐿1, . . . ,𝐿𝑛} such that we have
𝐿𝑛 ⊇ 𝐿𝑛−1 ⊇ · · · ⊇ 𝐿2 ⊇ 𝐿1

Page 29 Chapter 5 Greedy Algorithm

Then take 𝑖 ∈ [𝑛] to be the largest index such that |𝐴 ∩ 𝐿𝑖 | ≤ |𝐵 ∩ 𝐿𝑖 |. There will be such index because
otherwise we will have |𝐴| ≤ |𝐵 | which is not possible. Then take 𝑒∗ ∈ (𝐴 ∩ 𝐿𝑖+1) − (𝐿𝑖 ∪ 𝐵). Such an 𝑒∗ will
exist because |𝐴 ∩ 𝐿𝑖+1 | > |𝐴 ∩ 𝐿𝑖+1 | =⇒ 𝐴 ∩ (𝐿𝑖+1 − 𝐿𝑖 ≠ ∅ and also 𝐴 ∩ (𝐿𝑖+1 − 𝐿𝑖 ⊈ 𝐵 ∩ (𝐿𝑖+1 − 𝐿𝑖) because
otherwise we will have

|𝐴 ∩ 𝐿𝑖+1 | = |𝐴 ∩ (𝐿𝑖+1 − 𝐿𝑖 | + |𝐴 ∩ 𝐿𝑖+1 | ≤ |𝐵 ∩ (𝐿𝑖+1 − 𝐿𝑖) | + |𝐵 ∩ 𝐿𝑖 | = |𝐵 ∩ 𝐿𝑖+1 |

which is not possible. Hence there exists 𝑒∗ such that 𝑒∗ ∈ (𝐴 ∩ 𝐿𝑖+1) − (𝐿𝑖 ∪ 𝐵). Therefore take 𝐵∗ = 𝐵 ∪ {𝑒∗}.
Then for all 𝑗 < 𝑖 we have 𝐵∗ ∩ 𝐿 𝑗 = 𝐵 ∩ 𝐿 𝑗 so we don’t have a problem there. Now for all 𝑗 ≥ 𝑖 we have
|𝐴 ∩ 𝐿 𝑗 | > |𝐵 ∩ 𝐿 𝑗 |. Hence now |𝐵∗ ∩ 𝐿 𝑗 | ≤ |𝐵 ∩ 𝐿 𝑗 | + 1 ≤ |𝐴 ∩ 𝐿 𝑗 | ≤ 𝑘 (𝐿 𝑗). Therefore we have 𝐵∗ ∈ I. Hence
the exchange property follows.

Therefore𝑀 is a matroid. ■

• Graphic Matroid: Given a graph 𝐺 = (𝑉 ,𝐸) 𝐸 is the ground set and take

I = {𝐸′ ⊆ 𝐸 : 𝐸′ is acyclic}

Lemma 5.3.5
𝑀 = (𝐸,I) defined as above is a matroid

Proof:

1 Downward Closure: If a set of edges 𝑆 is acyclic then naturally any subset of edges of 𝑆 is also acyclic. Hence
downward closure property follows.

2 Exchange Property: 𝐴,𝐵 ∈ I, and |𝐵 | < |𝐴|. Let 𝐺1, . . . ,𝐺𝑘 are the connected components due to 𝐵. For each
component 𝐺𝑖 , we have |𝐺𝑖 ∩𝐴| ≤ |𝐺𝑖 ∩ 𝐵 | since each component is a tree and 𝐵 has maximum number of
edges for that component. Then 𝐴 contains an edge 𝑒 connecting 2 components𝐺𝑖 and𝐺 𝑗 . Then 𝐵 ∪ {𝑒} ∈ I.

Therefore𝑀 is a matroid ■

• Linear Matroid: Given a𝑚 ×𝑛 matrix𝑀 ∈ Z𝑚×𝑛 , 𝐸 = [𝑛] and take

I = {𝑆 ⊆ 𝐸 : Columns of𝑀 corresponding to 𝑆 are linearly independent}

Lemma 5.3.6
𝑀 = (𝐸,I) defined as above is a matroid

Proof:

1 Downward Closure: 𝐴 ∈ I, 𝐵 ⊆ 𝐴. Subset of linearly independent set is also linearly independent. Hence
𝐵 ∈ I.

2 Exchange Property: 𝐴,𝐵 ∈ I, |𝐵 | < |𝐴|. Then take span ⟨𝐴⟩ over Q. Now we know a set of integral vectors
are linearly independent over integers if and only if they are linearly independent over rationals. Hence
|𝐴| = dimQ⟨𝐴⟩ > dimQ⟨𝐵⟩ = |𝐵 |. Hence we can extend 𝐵 by an element 𝑒 ∈ 𝐴−𝐵 such that ⟨𝐵 ∪ {𝑒}⟩ = |𝐵 | + 1.
Hence 𝐵 ∪ {𝑒} ∈ I.

Therefore𝑀 is a matroid ■

This matroid is also called Metric Matroid.

5.3 Matroids Page 30

5.3.2 Finding Max Weight Base

Max Weight Base
Input: A matroid𝑀 = (𝐸, 𝐼) is given as an input as an oracle and a weight function𝑊 : 𝐸 → R.
Question: Find the maximum weight base of the matroid.

We will solve this using greedy algorithm.
Algorithm 15: Max-Weight-Base(𝐸,𝑊)
Input: A matroid𝑀 = (𝐸, 𝐼) is given as an input as an oracle and a weight function𝑊 : 𝐸 → R.
Output: Find the maximum weight base of the matroid

1 begin

2 Assume𝑤 (1) ≥ · · · ≥ 𝑤 (𝑛)
3 𝑆 ← ∅
4 𝐼 ← {𝑆}
5 for 𝑖 = 1 to 𝑛 do

6 if 𝑆 + 𝑖 ∈ 𝐼 then
7 𝑆 ← 𝑆 + 𝑖

8 return S

Theorem 5.3.7
The above algorithm outputs a maximum weight base

Proof: Let 𝑀 be a matroid. We will prove that this greedy algorithm works by inducting on 𝑖 . At any iteration 𝑖 we
need to prove the following claim:

Claim 5.3.1
At any iteration 𝑖 there is a max weight base 𝐵𝑖 such that 𝑆𝑖 ⊆ 𝐵𝑖 and 𝐵𝑖 \ 𝑆𝑖 ⊆ {𝑖 + 1, . . . ,𝑛}.

Proof: Base case: 𝑆 = ∅. So for base case the statement is true trivially. Assume that the statement is true
up to (𝑖 − 1) iterations.

Now 𝑆𝑖−1 ⊆ 𝐵𝑖−1 where 𝐵𝑖−1 is a maximum weight base and 𝐵𝑖−1 − 𝑆𝑖−1 ⊆ {𝑖 , . . . ,𝑛}. Now three cases
arise:
Case 1: If 𝑖 ∈ 𝐵𝑖−1 then 𝑆𝑖−1 + 𝑖 ⊆ 𝐵𝑖−1. Therefore, 𝑆𝑖−1 + 𝑖 is independent. So now 𝐵𝑖 = 𝐵𝑖−1 and 𝑆𝑖 = 𝑆𝑖−1 + 𝑖

and 𝐵𝑖 − 𝑆𝑖 ⊆ {𝑖 + 1, . . . ,𝑛}.
Case 2: If 𝑖 ∉ 𝐵𝑖−1 and 𝑆𝑖−1 + 𝑖 ∉ I. Then 𝑆𝑖 = 𝑆𝑖−1 and 𝐵𝑖 = 𝐵𝑖−1. And 𝐵𝑖 − 𝑆𝑖 ⊆ {𝑖 + 1, . . . ,𝑛}.
Case 3: If 𝑖 ∉ 𝐵𝑖−1 but 𝑆𝑖−1 + 𝑖 ∈ I. Then 𝑆𝑖 = 𝑆𝑖−1 + 𝑖 . Now 𝑆𝑖 can be extended to a 𝐵′ by adding all but one

element of 𝐵𝑖−1. So |𝐵′ | = |𝐵𝑖−1 |. Let the element which is not added is 𝑗 ∈ 𝐵𝑖−1. So 𝐵′ = 𝐵𝑖−1 + 𝑖 − 𝑗 .

𝑤𝑡 (𝐵′) = 𝑤𝑡 (𝐵𝑖−1) −𝑤𝑡 (𝑗) +𝑤𝑡 (𝑖)

But we have𝑤𝑡 (𝑖) ≥ 𝑤𝑡 (𝑗). So𝑤𝑡 (𝐵′) ≥ 𝑤𝑡 (𝐵𝑖−1). Now since 𝐵𝑖−1 has maximum weight we have
𝑤𝑡 (𝐵′) = 𝑤𝑡 (𝐵𝑖−1). Then our 𝐵𝑖 = 𝐵′. So 𝐵𝑖 − 𝑆𝑖 ⊆ {𝑖 + 1, . . . ,𝑛}.

Hence, the claim is true for the 𝑖th stage as well. Therefore, the claim is true. ■

Let the final set after 𝑛 iterations be the set 𝑇 = {𝑡1, . . . , 𝑡𝑙 }. Now we will prove that 𝑇 is a maximum weight independent
set.

Claim 5.3.2
At any iteration,𝑇𝑖 = {𝑡1, . . . , 𝑡𝑘 }, then𝑇𝑖 is a maximumweight independent set with at most 𝑖 elements

Proof: We will prove by induction. Base Case: 𝑖 = 0. Then 𝑇𝑖 = ∅. So the statement follows naturally.

Page 31 Chapter 5 Greedy Algorithm

Assume 𝑇𝑖−1 is maximum weight independent set with at most 𝑖 − 1 elements. Now for a contradiction, say
𝑇𝑖 ∈ I of size at most 𝑖 with strictly larger weight than𝑇𝑖 . Then ∃ 𝑥 ∈ 𝑇𝑖 −𝑇𝑖−1 such that𝑇𝑖−1 ∪ {𝑥} ∈ I. Then
we have

𝑤𝑡 (𝑇𝑖 − 𝑥) ≤ 𝑤𝑡 (𝑇𝑖−1)
by inductive hypothesis. The only element that extend𝑇𝑖−1 are those which comes after 𝑡𝑖 . Therefore,𝑤𝑡 (𝑥) ≤
𝑤𝑡 (𝑡𝑖). Hence, we have

𝑤𝑡 (𝑇𝑖 − 𝑥) +𝑤𝑡 (𝑥) ≤ 𝑤𝑡 (𝑇𝑖−1) +𝑤𝑡 (𝑡𝑖) =⇒ 𝑤𝑡 (𝑇𝑖) ≤ 𝑤𝑡 (𝑇𝑖)

But we assumed that𝑤𝑡 (𝑇𝑖) > 𝑤𝑡 (𝑇𝑖). Hence, contradiction E ■

Therefore using the claims, after the algorithm finished we have no elements left to check, so the current set has
the maximum weight which is also an independent set. So the algorithm successfully returns a maximum weight base. ■

5.3.3 Job Selection with Penalties

Find Feasible Schedule
Input: Set 𝐽 of 𝑛 jobs with deadlines 𝑑1, . . . ,𝑑𝑛 and rewards𝑤1, . . . ,𝑤𝑛
Question: Each jobs unit time and we have a single machine to process their jobs. Give a feasible schedule of jobs

with maximum reward

First let’s define what is a schedule and what is even a feasible schedule:

Definition 5.3.2: Feasible Schedule

For a subset 𝑆 of jobs:

1 A schedule is an ordering of 𝑆

2 A feasible schedule is one where one job in 𝑆 gets finished by deadline.

3 A set 𝑆 ⊆ 𝐽 is feasible if 𝑆 has a feasible schedule.

Now for any 𝑆 ⊆ 𝐽 , and 𝑡 ∈ Z0, define 𝑁𝑡 (𝑆) = { 𝑗 ∈ 𝑆 : 𝑑 𝑗 ≤ 𝑡}. Then we have the following lemma:

Lemma 5.3.8
Let 𝑆 ⊆ 𝐽 . The following are equivalent:

1 𝑆 is feasible

2 ∀ 𝑡 ∈ Z0, |𝑁𝑡 (𝑆) | ≤ 𝑡

3 A schedule that orders jobs in 𝑆 by deadline is feasible

Proof:

3 =⇒ 1: This follows naturally

1 =⇒ 2: Suppose not. Then ∃ 𝑡 such that |𝑁𝑡 (𝑆) | > 𝑡 . Then by time 𝑡 , greater than 𝑡 many jobs have to be
completed. But 𝑆 is feasible, so every job is finished by deadlines and each job takes unit take. Hence by time 𝑡 , more than
𝑡 jobs can not be finished. Hence, contradiction.

2 =⇒ 3: The schedule orders the jobs by deadline. We will use induction on 𝑡 . For 𝑡 = 1 we have |𝑁1 (𝑆) | ≤ 1.
Hence, by 𝑡 = 1 at most one job is completed. At 𝑡 = 1 the jobs are completed within deadline. Suppose till time 𝑡 − 1 the
jobs are completed within deadlines. At time 𝑡 we have |𝑁𝑡 (𝑆) | ≤ 𝑡 . Therefore, all the jobs with deadlines ≤ 𝑡 in 𝑆 . So all
the jobs in 𝑁𝑡 (𝑆) can be completed within time 𝑡 in any order. Therefore, if we complete the jobs with deadline < 𝑡 first,
and then we can complete all the jobs with deadline 𝑡 within time 𝑡 . Hence, at time 𝑡 all the jobs are completed within
their deadlines. Hence, by mathematical induction at time 𝑡 = 𝑛 all the jobs are completed within deadline. Therefore, the
schedule orders jobs by deadline then it is a feasible schedule.

5.3 Matroids Page 32

■

Lemma 5.3.9
Consider 𝑀 = (𝐽 ,I) where 𝑆 is feasible =⇒ 𝑆 ∈ I. Then 𝑀 is a matroid. (Assume that no two jobs have same
deadline)

Proof: Suppose 𝐷 B the maximum of all deadlines. Consider the set

L = {𝑁𝑡 (𝐽) : 𝑡 ∈ [𝐷]}

Hence L is a laminar family. Then take I′ = {𝑆 ⊆ 𝐽 : |𝑁𝑡 (𝑆) | ≤ 𝑡 ∀𝑡 ∈ [𝐷]}. By Lemma 5.3.4 𝑀 = (𝐽 ,I′) is a laminar
matroid. And by Lemma 5.3.8 I′ is the set of feasible schedules. Therefore I′ = I. Hence𝑀 is a matroid. ■

Alternate Proof :

1 Downward Closure: If 𝑆 ∈ I then 𝑆 is feasible. Then for any subset𝑇 of 𝑆 all the jobs are completed within deadlines
since 𝑆 is feasible. So 𝑇 ∈ I.

2 Exchanges Property: Given 𝑆 ,𝑇 ∈ I and |𝑇 | < |𝑆 |. Now order 𝑆 and 𝑇 by deadlines. Let 𝑗 be the job with largest
deadline that is not in 𝑇 i.e. 𝑗 = max

𝑖∈𝑆\𝑇
𝑑𝑖 . Then we claim that 𝑇 ∪ { 𝑗} ∈ I.

Now define
𝑇 < = {𝑖 ∈ 𝑇 : 𝑑𝑖 < 𝑑 𝑗 } 𝑇 > = {𝑖 ∈ 𝑇 : 𝑑𝑖 > 𝑑 𝑗 }

And also similarly define
𝑆< = {𝑖 ∈ 𝑆 : 𝑑𝑖 < 𝑑 𝑗 } 𝑆> = {𝑖 ∈ 𝑆 : 𝑑𝑖 > 𝑑 𝑗 }

As we defined 𝑗 we have 𝑇 > = 𝑆> . Since we have |𝑆 | > |𝑇 | we have |𝑆< | ≥ |𝑇 < |.
Now if 𝑇 ∪ { 𝑗} is not feasible then ∃ 𝑡 such that |𝑁𝑡 (𝑇 ∪ { 𝑗}) | > 𝑡 . Since 𝑇 is feasible we have |𝑁𝑡 (𝑇) | ≤ 𝑡 .

Hence 𝑡 ≥ 𝑑 𝑗 otherwise 𝑁𝑡 (𝑇 ∪ { 𝑗}) = 𝑁𝑡 (𝑇). But then

|𝑁𝑡 (𝑇 ∪ { 𝑗}) | = |𝑇 < | + 1 + |{𝑖 ∈ 𝑇 ∪ { 𝑗} : 𝑑 𝑗 < 𝑑𝑖 ≤ 𝑡}| ≤ |𝑆< | + 1 + |{𝑖 ∈ 𝑆 ∪ { 𝑗} : 𝑑 𝑗 < 𝑑𝑖 ≤ 𝑡}| = |𝑁𝑡 (𝑆) | ≤ 𝑡

Therefore we obtain |𝑁𝑡 (𝑇 ∪ { 𝑗}) | ≤ 𝑡 . Hence contradiction. Therefore 𝑇 ∪ { 𝑗} is feasible.

■

Chapter 6
Dijkstra Algorithm with Data

Structures

Minimum Weight Path
Input: Directed Graph 𝐺 = (𝑉 ,𝐸), 𝑠 ∈ 𝑉 is source and𝑊 = {𝑤𝑒 ∈ Z0 : 𝑒 ∈ 𝐸}
Question: ∀ 𝑣 ∈ 𝑉 − {𝑠} find minimum weight path 𝑠 ⇝ 𝑣 .

This is the problem we will discuss in this chapter. In this chapter we will often use the term ‘shortest distance’ to
denote the minimum weight path distance. One of the most famous algorithm for finding out minimum weight paths to
all vertices from a given source vertex is Dijkstra’s Algorithm

6.1 Dijkstra Algorithm

We will assume that the graph is given as adjacency list. Dijkstra Algorithm is basically dynamic programming. Suppose
𝛿 (𝑣) is the shortest path distance from 𝑠 ⇝ 𝑣 . Then we have the following relation:

𝛿 (𝑣) = min
𝑢 :(𝑢,𝑣) ∈𝐸

{𝛿 (𝑢) + 𝑒 (𝑢, 𝑣)}

And suppose for any vertex 𝑣 ∈ 𝑉 − {𝑠}, 𝑑𝑖𝑠𝑡 (𝑣) be the distance from 𝑠 estimated by the algorithm at any point. This is why
Dijkstra’s algorithm maintains a set 𝑆 of vertices whose final shortest-path weights from the source 𝑠 have already been
determined. The algorithm repeatedly selects the vertex 𝑢 ∈ 𝑉 − 𝑆 with minimum shortest-path estimate and estimates
the distances of neighbors of 𝑢. So here is the algorithm:

Algorithm 16: Dijkstra(𝐺 , 𝑠 ,𝑊)
Input: Adjacency Matrix of digraph 𝐺 = (𝑉 ,𝐸), source vertex 𝑠 ∈ 𝑉 and weight function𝑊 = {𝑤𝑒 ∈ Z0 : 𝑒 ∈ 𝐸}
Output: ∀ 𝑣 ∈ 𝑉 − {𝑠} minimum weight path from 𝑠 ⇝ 𝑣

1 begin

2 𝑆 ←− ∅,𝑈 ←− 𝑉
3 𝑑𝑖𝑠𝑡 (𝑠) ←− 0, ∀ 𝑣 ∈ 𝑉 − {𝑠}, 𝑑𝑖𝑠𝑡 (𝑣) ←− ∞
4 while𝑈 ≠ ∅ do
5 𝑢 ←− min

𝑢∈𝑈
𝑑𝑖𝑠𝑡 (𝑢) and remove 𝑢 from𝑈

6 𝑆 ←− 𝑆 ∪ {𝑢}
7 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do

8 𝑑𝑖𝑠𝑡 (𝑣) ←− min{𝑑𝑖𝑠𝑡 (𝑣),𝑑𝑖𝑠𝑡 (𝑢) +𝑤 (𝑢, 𝑣)}

Here below we give an example of how the Dijkstra algorithm works:

6.1 Dijkstra Algorithm Page 34

0𝑠

∞ ∞

∞ ∞

10

5

1

2 4 6

7

2

93 0𝑠

10 ∞

5 10

10

5

1

2 4 6

7

2

93 0𝑠

8 13

5 7

10

5

1

2 4 6

7

2

93

0𝑠

8 13

5 7

10

5

1

2 4 6

7

2

93 0𝑠

8 9

5 7

10

5

1

2 4 6

7

2

93 0𝑠

8 9

5 7

10

5

1

2 4 6

7

2

93

Figure 6.1: The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The shortest-path estimates appear
within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set 𝑆 and at any iteration of
while loop the shaded vertex has the minimum value. At any iteration the red edges are the edges considered in minimum
weight path from 𝑠 using only vertices in 𝑆 .

Suppose at any iteration 𝑡 , let 𝑑𝑖𝑠𝑡𝑡 (𝑣) denotes the distance 𝑣 from 𝑠 calculated by algorithm for any 𝑣 ∈ 𝑉 and 𝑆 (𝑡)
denote the content of 𝑆 at 𝑡𝑡ℎ iteration. In order to show that the algorithm correctly computes the distances we prove
the following lemma:

Theorem 6.1.1
For each 𝑣 ∈ 𝑆 (𝑡) , 𝛿 (𝑣) = 𝑑𝑖𝑠𝑡𝑡 (𝑣) for any iteration 𝑡 .

Proof: Wewill prove this induction. Base case is |𝑆 (1) | = 1. 𝑆 grows in size. Then only time |𝑆 (1) | = 1 is when 𝑆 (1) = {𝑠}
and 𝑑 (𝑠) = 0 = 𝛿 (𝑠). Hence, for base case this is correct.

Suppose this is also true for 𝑡 − 1. Let at 𝑡𝑡ℎ iteration the vertex 𝑢 ∈ 𝑉 − 𝑆 (𝑡−1) is picked. By induction hypothesis
for all 𝑣 ∈ 𝑆 (𝑡) − {𝑢}, 𝑑𝑖𝑠𝑡𝑡 (𝑣) = 𝑑𝑖𝑠𝑡𝑡−1 (𝑣) = 𝛿 (𝑣). So we have to show that 𝑑𝑖𝑠𝑡𝑡 (𝑢) = 𝛿 (𝑢).

Suppose for contradiction the shortest path from 𝑠 ⇝ 𝑢 is 𝑃 and has total weight = 𝛿 (𝑢) = 𝑤 (𝑃) < 𝑑𝑖𝑠𝑡𝑡 (𝑢). Now
𝑃 starts with vertices from 𝑆 (𝑡) by eventually leaves 𝑆 . Let (𝑥 ,𝑦) be the first edge in 𝑃 which leaves 𝑆 i.e. 𝑥 ∈ 𝑆 but 𝑦 ∉ 𝑆 .
By inductive hypothesis 𝑑𝑖𝑠𝑡𝑡 (𝑥) = 𝛿 (𝑥). Let 𝑃𝑦 denote the path 𝑠 ⇝ 𝑦 following 𝑃 . Since 𝑦 appears before 𝑢 we have

𝑤 (𝑃𝑦) = 𝛿 (𝑦) ≤ 𝛿 (𝑢) = 𝑤 (𝑃)

Now
𝑑𝑖𝑠𝑡𝑡 (𝑦) ≤ 𝑑𝑖𝑠𝑡𝑡 (𝑥) +𝑤 (𝑥 ,𝑦)

since 𝑦 is adjacent to 𝑥 . Therefore

𝑑𝑖𝑠𝑡𝑡 (𝑦) ≤ 𝑑𝑖𝑠𝑡𝑡 (𝑥) +𝑤 (𝑥 ,𝑦) = 𝛿 (𝑦) ≤ 𝑑𝑖𝑠𝑡𝑡 (𝑦) =⇒ 𝑑𝑖𝑠𝑡𝑡 (𝑦) = 𝛿 (𝑦)

Page 35 Chapter 6 Dijkstra Algorithm with Data Structures

Now since both 𝑢,𝑦 ∉ 𝑆 (𝑡) and the algorithm picked up 𝑢 we have 𝛿 (𝑢) < 𝑑𝑖𝑠𝑡𝑡 (𝑢) ≤ 𝑑𝑖𝑠𝑡𝑡 (𝑦) = 𝛿 (𝑦). But we can not have
both 𝛿 (𝑦) ≤ 𝛿 (𝑢) and 𝛿 (𝑢) < 𝛿 (𝑦). Hence contradiction ETherefore 𝛿 (𝑢) = 𝑑𝑖𝑠𝑡𝑡 (𝑢). Hence by mathematical induction
for any iteration 𝑡 , for all 𝑣 ∈ 𝑆 (𝑡) , 𝛿 (𝑣) = 𝑑𝑖𝑠𝑡𝑡 (𝑣). ■

Therefore, by the theorem after all iterations 𝑆 has all the verticeswith their shortest distances from 𝑠 and henceforth
the algorithm runs correctly.

Now in the algorithm there are two things which we needed to keep track of. At every iteration of the while loop
we needed to find the vertex 𝑢 which had the minimum distance from the source vertex, and we needed to update the
distance of a vertex by decreasing the value as needed. So after the decrease we need to update the minimum distance
vertex. So in any data structure used to do these two operations we need the following things:

• Need to store: ∀ 𝑣 ∈ 𝑉 , 𝑑𝑖𝑠𝑡 (𝑣)

• Operations:

– Extract-Min: Gives the vertex with minimum distance in 𝑣 and remove from the data structure.
– Decrease-Key: For vertex 𝑣 reduce 𝑑𝑖𝑠𝑡 (𝑣) to 𝑘 .

In the algorithm we called Extract-Min 𝑛 times and Decrease-Key𝑚 times.

6.2 Data Structure 1: Linear Array

So naively we can use a linear array of size 𝑛 where each element of the array corresponds to a vertex. Each element of the
array is a tuple of flag of being in𝑈 and the value 𝑑𝑖𝑠𝑡 (𝑣). To Extract-Min it takes𝑂 (𝑛) time since we need to compare
all the elements and for Decrese-Key it takes 𝑂 (1) time. Therefore Dijkstra takes 𝑛 ·𝑂 (𝑛) +𝑂 (𝑚) = 𝑂 (𝑛2) time.

6.3 Data Structure 2: Min Heap

A binary heap data structure is an array object that we can view as “Almost complete binary” tree (ACB tree). Each node
of the tree corresponds to an element of the array. The tree is completely filled on all levels except possibly the lowest
which is filled from the left up to a point.

Let the ACB tree has height ℎ. Then heap is completely field until height ℎ − 1 i.e. every vertex up to level ℎ − 2
has exactly two children and a node at height ℎ − 1 if missing a child then:

• Either both children are missing or only right child are missing.

• Every vertex to the right of the node is missing both children.

An ACB tree height ℎ is represented as an array of size 2ℎ − 1. For vertex 𝑣 stored at 𝐴[𝑖], the left child of 𝐴 is at 𝐴[2𝑖]
and the right child is at 𝐴[2𝑖 + 1] and the parent of 𝐴 is at 𝐴

[⌊
𝑖
2
⌋]
.

��� &KDSWHU � +HDSVRUW

�D�

�� �� �� � � � � � � �

� � � � � � � � � ��

�E�

�

� �

� � � �

� � ��

��

�� ��

� � � �

� � �

)LJXUH ��� $ PD[�KHDS YLHZHG DV �D� D ELQDU\ WUHH DQG �E� DQ DUUD\� 7KH QXPEHU ZLWKLQ WKH FLUFOH

DW HDFK QRGH LQ WKH WUHH LV WKH YDOXH VWRUHG DW WKDW QRGH� 7KH QXPEHU DERYH D QRGH LV WKH FRUUHVSRQGLQJ

LQGH[LQ WKH DUUD\� $ERYH DQG EHORZ WKH DUUD\ DUH OLQHV VKRZLQJ SDUHQW�FKLOG UHODWLRQVKLSV� SDUHQWV

DUH DOZD\V WR WKH OHIW RI WKHLU FKLOGUHQ� 7KH WUHH KDV KHLJKW WKUHH� WKH QRGH DW LQGH[� �ZLWK YDOXH ��

KDV KHLJKW RQH�

3$5(17.i/

� UHWXUQ bi=2c

/()7.i/

� UHWXUQ 2i

5,*+7.i/

� UHWXUQ 2i C 1

2Q PRVW FRPSXWHUV� WKH /()7 SURFHGXUH FDQ FRPSXWH 2i LQ RQH LQVWUXFWLRQ E\

VLPSO\ VKLIWLQJ WKH ELQDU\ UHSUHVHQWDWLRQ RI i OHIW E\ RQH ELW SRVLWLRQ� 6LPLODUO\� WKH

5,*+7 SURFHGXUH FDQ TXLFNO\ FRPSXWH 2i C1 E\ VKLIWLQJ WKH ELQDU\ UHSUHVHQWDWLRQ

RI i OHIW E\ RQH ELW SRVLWLRQ DQG WKHQ DGGLQJ LQ D 1 DV WKH ORZ�RUGHU ELW� 7KH

3$5(17 SURFHGXUH FDQ FRPSXWH bi=2c E\ VKLIWLQJ i ULJKW RQH ELW SRVLWLRQ� *RRG

LPSOHPHQWDWLRQV RI KHDSVRUW RIWHQ LPSOHPHQW WKHVH SURFHGXUHV DV ³PDFURV´ RU ³LQ�

OLQH´ SURFHGXUHV�

7KHUH DUH WZR NLQGV RI ELQDU\ KHDSV� PD[�KHDSV DQG PLQ�KHDSV� ,Q ERWK NLQGV�

WKH YDOXHV LQ WKH QRGHV VDWLVI\ D KHDS SURSHUW\� WKH VSHFL¿FV RI ZKLFK GHSHQG RQ

WKH NLQG RI KHDS� ,Q D PD[�KHDS� WKH PD[�KHDS SURSHUW\ LV WKDW IRU HYHU\ QRGH i

RWKHU WKDQ WKH URRW�

AŒ3$5(17.i/� � AŒi� ;

WKDW LV� WKH YDOXH RI D QRGH LV DW PRVW WKH YDOXH RI LWV SDUHQW� 7KXV� WKH ODUJHVW

HOHPHQW LQ D PD[�KHDS LV VWRUHG DW WKH URRW� DQG WKH VXEWUHH URRWHG DW D QRGH FRQWDLQV

Figure 6.2: A max-heap viewed as an ACB tree (left) and as an array (right)

Here we will study min-heap where the value of the children is more than the value of its parent.

6.3 Data Structure 2: Min Heap Page 36

6.3.1 Extracting the Minimum

For minimum, we already know the root of the heap or the first element of 𝐴 is the minimum. But after extracting the
minimum we need to balance the heap so that it gets the properties of min-heap back. For that we replace the root with
the right most element in the array 𝐴. Then balance the heap by moving it down if one of the child has key smaller than
node.key and keep doing it until both child is larger.

Algorithm 17: Extract-Min(𝐴)
1 𝑡 ←− 𝐴.size,𝑀𝑖𝑛𝑣𝑎𝑙 ←− 𝐴[1].key
2 𝐴[1] ←− 𝐴[𝑡]
3 𝑡 ←− 𝑡 − 1, 𝑖 ←− 1
4 while True do

5 if 2𝑖 ≤ 𝑡 then
6 𝑙𝑒 𝑓 𝑡 − 𝑣𝑎𝑙 ←− 𝐴[2𝑖].key
7 else

8 return𝑚𝑖𝑛𝑣𝑎𝑙 // No left child i.e. already at leaf

9 if 2𝑖 + 1 ≤ 𝑡 then
10 𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑎𝑙 ←− 𝐴[2𝑖 + 1].key
11 else

12 𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑎𝑙 ←− ∞ // No right child

13 if 𝑙𝑒 𝑓 𝑡 − 𝑣𝑎𝑙 ≤ 𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑎𝑙 and 𝐴[𝑖].key < 𝑙𝑒 𝑓 𝑡 − 𝑣𝑎𝑙 then
14 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚 ←− 𝐴[𝑖]
15 𝐴[𝑖] ←− 𝐴[2𝑖]
16 𝑈 [2𝑖] ←− 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚
17 𝑖 ←− 2𝑖
18 else if 𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑎𝑙 < 𝑙𝑒 𝑓 𝑡 − 𝑣𝑎𝑙 then
19 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚 ←− 𝐴[𝑖]
20 𝐴[𝑖] ←− 𝐴[2𝑖 + 1]
21 𝑈 [2𝑖 + 1] ←− 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚
22 𝑖 ←− 2𝑖 + 1
23 else

24 Break
25 return𝑚𝑖𝑛𝑣𝑎𝑙

In this algorithm for extracting min each time the height of the new root node increases by one at each iteration
of the while loop. Hence, this takes at most 𝑂 (log𝑛) time.

6.3.2 Decreasing Key of a Node

After decreasing the key of a node it may have smaller key than it’s parent node. So move it upward i.e. replace with
its parent node, and we keep doing it until the parent node has smaller value than it. Here again at each iteration of the

Algorithm 18: Decrease-Key(𝐴, 𝑖 ,𝑘)
1 𝑡 ←− 𝐴.size
2 𝐴[𝑖] ←− 𝑘
3 while 𝑖 > 1 and 𝐴[𝑖].key < 𝐴

[
⌊ 𝑖2 ⌋

]
.key do

4 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚 ←− 𝐴[𝑖]
5 𝐴[𝑖].key←− 𝐴

[⌊
𝑖
2
⌋]

6 𝐴
[⌊
𝑖
2
⌋]
←− 𝑐𝑢𝑟𝑟 𝑒𝑙𝑚

7 𝑖 ←−
⌊
𝑖
2
⌋

Page 37 Chapter 6 Dijkstra Algorithm with Data Structures

while loop the height decreases by 1. Hence, this takes at most 𝑂 (log𝑛) time.

6.3.3 Time Complexity Analysis of Dijkstra

Both Extract-Min and Decrease-Key takes 𝑂 (log𝑛) time for a min-heap. Now in a Dijkstra algorithm there are 𝑛 calls
for Extract-Min and𝑚 calls for Decrease-Key. Therefore, the total time taken by Dijkstra is 𝑂 (𝑛 log𝑛) +𝑂 (𝑚 log𝑛) =
𝑂 (𝑚 log𝑛). But this is better when𝑚 = 𝑜

(
𝑛2

log𝑛

)
. Now we will show an improvement of min-heap where the amortized

cost of Extract-Min is 𝑂 (log𝑛) and amortized cost of Decrease-Key is constant. But first we will take a detour of
explaining amortized analysis.

6.4 Amortized Analysis

In amortized analysis, we average the time required to perform a sequence of data-structure operations over all the op-
erations performed. With amortized analysis, we can show that the average cost of an operation is small, if we average
over a sequence of operations, even though a single operation within the sequence might be expensive.

Note:-

Amortized analysis in not average-case analysis as amortized analysis guarantees the average performance of each
operation in the worst case

Consider the following algorithm: Now the number of bit flips in this process is 1, 2, 1, 3, . . . ,𝑛, At any point

Algorithm 19: Amortized Analysis
Input: 𝑛

1 begin

2 𝑡 ←− 0, 𝑋 (0) ←− 0𝑛
3 while True do

4 𝑡 ←− 𝑡 + 1
5 𝑋 (𝑡) ←− 𝑋 (𝑡 − 1) + 1

the number of bit flips can be at most 𝑛. In the worst case an operation has cost 𝑛. We want to compute the average cost
for an operation. We will show that starting from 𝑋 (0) = 0𝑛 the average cost is at most 2. Furthermore, we will show 3
different proofs of this.

Lemma 6.4.1
The total cost of bit flips for 𝑡 operations is at most 2𝑡 .

Proof 1 (Counting): In 𝑡 operations:

𝑛𝑡ℎ bit gets flipped: 𝑡 times
(𝑛 − 1)𝑡ℎ bit gets flipped: ⌊ 𝑡2 ⌋ times (when 𝑛𝑡ℎ bit is 1)
(𝑛 − 2)𝑡ℎ bit gets flipped: ⌊ 𝑡4 ⌋ times (when (𝑛 − 1)𝑡ℎ bit is 1)

...
...

Therefore the total number of bit flips we get is ≤ 𝑡
(
1 + 1

2 +
1
4 + · · ·

)
≤ 2𝑡 . ■

Now we will give a proof using the accounting method. In the accounting method of amortized analysis, we assign
each operation an amortized cost that may differ from its actual cost. If the amortized cost is higher, the excess is stored as
credit on data structure objects; if lower, credit is used to cover the gap. This way, expensive operations can be balanced
by cheaper ones, and different operations may have different amortized costs.
Proof 2 (Charging): Suppose every operation costs 2 Rs.

• Every change from 0→ 1 charges 1 Rs and store 1 Rs.

6.5 Data Structure 3: Fibonacci Heap Page 38

• Every change from 1→ 0 charges 2 Rs.

Now as you can see to change from 1→ 0 that bit was previously changed from 0→ 1. So to change from 1→ 0 we can
use the stored 1 Rs. Hence, in average every operation costs exactly 2 Rs. Since there are 𝑡 operations total number of bit
flips is at most 2𝑡 . ■

In the next proof we will analyze by computing a necessary potential function. After each operation we can
calculate the potential difference.
Proof 3 (Potential): Consider the potential function Φ(𝑖) = #1’s in 𝑋 (𝑖). Let at 𝑖𝑡ℎ operation 𝑡𝑖 bits were flipped from
1→ 0. Now any operation flips at most 1 bit from 0→ 1. Therefore, number of bit flips in 𝑖𝑡ℎ operation is at most 𝑡𝑖 + 1.
Therefore, we have

Φ(𝑖) ≤ Φ(𝑖 − 1) − 𝑡𝑖 + 1

since the number of 1’s in Φ(𝑖) is decreased by 𝑡𝑖 many 1 → 0 flips and then increased because of 1 flip from 0 → 1.
Therefore, the cost at 𝑖𝑡ℎ operation is 𝑡𝑖 + 1 ≤ Φ(𝑖 − 1) − Φ(𝑖) + 2. Hence, the total number of bit flips in 𝑡 operations is
Φ(0) − Φ(𝑡) + 2𝑡 ≤ 2𝑡 . ■

Hence, after 𝑡 operations the total number of bit flips is at most 2𝑡 . Therefore, on average the cost per operation
is at most 2. Hence, the amortized cost of the operation is 2. So we will use such amortized analysis on the next data
structure to optimize the run time of Dijkstra Algorithm.

6.5 Data Structure 3: Fibonacci Heap

Instead of keeping just one Heap we will now keep an array of Heaps. We will also discard the idea of binary trees. We
will now use a data structure which will take the benefit of the faster time of both the data structure i.e.

Extract-Min Decrease-Key
Linear Array 𝑂 (𝑛) 𝑂 (1)
Min-Heap 𝑂 (log𝑛) 𝑂 (log𝑛)

Fibonacci Heap 𝑂 (log𝑛)∗ 𝑂 (1)∗

Remark: The ∗ is because of the amortized time.

Since Fibonacci heap is an array of heaps there is a rootlist which is the list of all the roots of all the heaps in the Fibonacci
heap. There is amin-pointer which points to the root with the minimum key. For each node in the Fibonacci heap we have
a pointer to its parent and we keep 3 variables. The 3 variables are degree, size and lost where lost is a Boolean Variable.

• For any node 𝑥 in the Fibonacci heap the 𝑥 .degree is the number of children 𝑥 has.

• 𝑥 .size is the number of nodes in the tree rooted at 𝑥 .

• 𝑥 .lost is 1 if and only if 𝑥 has lost a child before.

Why any node will lose a child that explanation we will give later. With this set up let’s dive into the data structure.

6.5.1 Inserting Node

To insert a node we call the Fib-Insert function and in the function the algorithm initiates the node with setting up all
the pointers and variables then add the node to the rootlist.

Page 39 Chapter 6 Dijkstra Algorithm with Data Structures

��� &KDSWHU ��)LERQDFFL +HDSV

��

�� �� ��

��

��

�� �� ��

�

�� ��

�� �

��

�� �� ��

��

��

�� �� ��

�

�� ��

�� �

�D�

�E�

)LJXUH ���� �D� $)LERQDFFL KHDS FRQVLVWLQJ RI ¿YH PLQ�KHDS�RUGHUHG WUHHV DQG �� QRGHV� 7KH

GDVKHG OLQH LQGLFDWHV WKH URRW OLVW� 7KH PLQLPXP QRGH RI WKH KHDS LV WKH QRGH FRQWDLQLQJ WKH NH\ 3�

%ODFN QRGHV DUH PDUNHG� 7KH SRWHQWLDO RI WKLV SDUWLFXODU)LERQDFFL KHDS LV 5C2 �3 D 11� �E�$ PRUH

FRPSOHWH UHSUHVHQWDWLRQ VKRZLQJ SRLQWHUV p �XS DUURZV�� FKLOG �GRZQ DUURZV�� DQG OHIW DQG ULJKW

�VLGHZD\V DUURZV�� 7KH UHPDLQLQJ ¿JXUHV LQ WKLV FKDSWHU RPLW WKHVH GHWDLOV� VLQFH DOO WKH LQIRUPDWLRQ

VKRZQ KHUH FDQ EH GHWHUPLQHG IURP ZKDW DSSHDUV LQ SDUW �D��

&LUFXODU� GRXEO\ OLQNHG OLVWV �VHH 6HFWLRQ ����� KDYH WZR DGYDQWDJHV IRU XVH LQ

)LERQDFFL KHDSV�)LUVW� ZH FDQ LQVHUW D QRGH LQWR DQ\ ORFDWLRQ RU UHPRYH D QRGH

IURP DQ\ZKHUH LQ D FLUFXODU� GRXEO\ OLQNHG OLVW LQ O.1/ WLPH� 6HFRQG� JLYHQ WZR

VXFK OLVWV� ZH FDQ FRQFDWHQDWH WKHP �RU ³VSOLFH´ WKHP WRJHWKHU� LQWR RQH FLUFXODU�

GRXEO\ OLQNHG OLVW LQ O.1/ WLPH� ,Q WKH GHVFULSWLRQV RI)LERQDFFL KHDS RSHUDWLRQV�

ZH VKDOO UHIHU WR WKHVH RSHUDWLRQV LQIRUPDOO\� OHWWLQJ \RX ¿OO LQ WKH GHWDLOV RI WKHLU

LPSOHPHQWDWLRQV LI \RX ZLVK�

(DFK QRGH KDV WZR RWKHU DWWULEXWHV� :H VWRUH WKH QXPEHU RI FKLOGUHQ LQ WKH FKLOG

OLVW RI QRGH x LQ x:GHJUHH� 7KH ERROHDQ�YDOXHG DWWULEXWH x:PDUN LQGLFDWHV ZKHWKHU

QRGH x KDV ORVW D FKLOG VLQFH WKH ODVW WLPH x ZDV PDGH WKH FKLOG RI DQRWKHU QRGH�

1HZO\ FUHDWHG QRGHV DUH XQPDUNHG� DQG D QRGH x EHFRPHV XQPDUNHG ZKHQHYHU LW

LV PDGH WKH FKLOG RI DQRWKHU QRGH� 8QWLO ZH ORRN DW WKH '(&5($6(�.(< RSHUDWLRQ

LQ 6HFWLRQ ����� ZH ZLOO MXVW VHW DOO PDUN DWWULEXWHV WR)$/6(�

:H DFFHVV D JLYHQ)LERQDFFL KHDS H E\ D SRLQWHU H:PLQ WR WKH URRW RI D WUHH

FRQWDLQLQJ WKH PLQLPXP NH\� ZH FDOO WKLV QRGH WKHPLQLPXP QRGH RI WKH)LERQDFFL

F:min

Figure 6.3: A Fibonacci Heap with 5 heaps in the rootlist

Algorithm 20: Fib-Create-Node(𝑣)
1 𝑥 .degree←− 0
2 𝑥 .parent←− 𝑁𝑜𝑛𝑒
3 𝑥 .child←− 𝑁𝑜𝑛𝑒
4 𝑥 .lost←− 0
5 𝑥 .key←− 𝑣
6 return 𝑥

Algorithm 21: Fib-Insert(𝐹 , 𝑣)
1 𝑥 ←− Fib-Create-Node(𝑣)
2 if 𝐹 . min == 𝑁𝑜𝑛𝑒 then

3 𝐹 .rootlist←− [𝑥]
4 𝐹 . min←− 𝑥
5 else

6 𝐹 .rootlist.append(𝑥)
7 if 𝑥 .𝑘𝑒𝑦 < 𝐹 . min .𝑘𝑒𝑦 then

8 𝐹 .𝑚𝑖𝑛 ←− 𝑥

All of this can be done in 𝑂 (1) time. Therefore, to insert a node in the Fibonacci heap it takes 𝑂 (1) time.

6.5.2 Union of Fibonacci Heaps

To unite two Fibonacci heaps 𝐹1 and 𝐹2 we simply concatenate the root lists of 𝐹1 and 𝐹2 and then determine the new
minimum node. All the operations here can be done in constant time. Hence, Fib-Union takes 𝑂 (1) time.

Algorithm 22: Fib-Union(𝐹1, 𝐹2)
1 𝐹 ←− Make-Fib-Heap
2 𝐹 . min←− 𝐹1. min
3 𝐹 .rootlist←− 𝐹1.rootlist + +𝐹2.rootlist
4 if 𝐹2. min < 𝐹1. min then

5 𝐹 . min←− 𝐹2. min
6 return 𝐹

6.5.3 Extracting the Minimum Node

The Fib-Extract-Min function extracts the minimum node from the Fibonacci heap 𝐹 and then rearranges the heap array.
It works by first making a root node out of each of the minimum node’s children and removing the minimum node from
the rootlist. It then consolidates the root list by linking roots of equal degree until at most one root remains of each degree.

6.5 Data Structure 3: Fibonacci Heap Page 40

Algorithm 23: Fib-Extract-Min(𝐹)
1 𝑧 ←− 𝐹 . min
2 if 𝑧 ≠ 𝑁𝑜𝑛𝑒 then

3 for 𝑥 ∈ 𝑧.child do

4 𝐹 .rootlist.append(𝑥)
5 𝑥 .parent←− 𝑁𝑜𝑛𝑒
6 Remove 𝑧 from 𝐹 .rootlist
7 if 𝑧 == 𝑧.right then
8 𝐹 . min←− 𝑁𝑜𝑛𝑒
9 else

10 𝐹 . min←− 𝑧.right consolidate(𝐹)

11 return 𝑧

Algorithm 24: Fib-Heap-Link(𝐻 ,𝑦,𝑥)
1 Remove 𝑦 from 𝐹 .rootlist
2 𝑦.parent←− 𝑥
3 𝑦.lost←− 0

Algorithm 25: Consolidate(𝐹)
1 Initialize array 𝐴[0, . . . ,𝐷 (𝑛)] with None elements.
2 for 𝑥 ∈ 𝐹 .rootlist do
3 𝑑 ←− 𝑥 .degree
4 if 𝐴[𝑑] == 𝑁𝑜𝑛𝑒 then
5 𝐴[𝑑] ←− 𝑥
6 while 𝐴[𝑑] ≠ 𝑁𝑜𝑛𝑒 do
7 𝑦 ←− 𝐴[𝑑]
8 if 𝑦.key < 𝑥 .key then

9 Exchange 𝑥 with 𝑦
10 Fib-Heap-Link(𝐹 ,𝑦,𝑥)
11 𝐴[𝑑] ←− 𝑁𝑜𝑛𝑒 , 𝑑 ←− 𝑑 + 1
12 𝐴[𝑑] ←− 𝑥
13 𝐹 . min←− 𝑁𝑜𝑛𝑒
14 for 𝑖 = 0 to 𝐷 do

15 if 𝐴[𝑖] ≠ 𝑁𝑜𝑛𝑒 then
16 if 𝐹 . min == 𝑁𝑜𝑛𝑒 then

17 𝐹 .rootlist←− [𝐴[𝑖]], 𝐹 . min←− 𝐴[𝑖]
18 else

19 𝐹 .rootlist.append(𝐴[𝑖])
20 if 𝐴[𝑖].key < 𝐹 . min .key then

21 𝐹 . min←− 𝐴[𝑖]

Here 𝐷 (𝑛) denotes the maximum degree a node can have after Consolidate. The procedure Consolidate uses an aux-
iliary array of size 𝐴 of size 𝐷 (𝑛) which we will choose later. For each 𝑖 ≤ 𝐷 (𝑛) it keeps a heap of degree 𝑖 . And if it
finds two heaps of same degree then it makes the one with higher key to be the child of the other one. The function

��� &KDSWHU ��)LERQDFFL +HDSV

$
� � � �

$
� � � �

$
� � � �

$
� � � �

$
� � � �

$
� � � �

��

��

�� ��

��

��

��

�

��

��

����

��

��

��

� ��

�� �� ��

�� ��

� ��

�� �� �� ��

�� ��

��

��

����

��

��

��

� �� �� �� ��

�� ��

��

��

����

��

��

��

� �� �� �� ��

�� ��

��

��

����

��

��

��

� �� �� �� ��

�� ��

��

��

����

��

��

��

� �� �� �� ��

�� ��

��

��

��

�� ��

��

��

� �� �� �� ��

�� ��

��

��

��

�� ��

��

��

� �� �� �� ��

�� ��

Z�[Z�[

Z�[Z�[

Z�[Z�[

H:PLQH:PLQ

)LJXUH ���� 7KH DFWLRQ RI),%�+($3�(;75$&7�0,1� �D� $)LERQDFFL KHDS H � �E� 7KH VLWXD�

WLRQ DIWHU UHPRYLQJ WKH PLQLPXP QRGH ´ IURP WKH URRW OLVW DQG DGGLQJ LWV FKLOGUHQ WR WKH URRW OLVW�

�F�±�H� 7KH DUUD\ A DQG WKH WUHHV DIWHU HDFK RI WKH ¿UVW WKUHH LWHUDWLRQV RI WKH IRU ORRS RI OLQHV �±�� RI

WKH SURFHGXUH &2162/,'$7(� 7KH SURFHGXUH SURFHVVHV WKH URRW OLVW E\ VWDUWLQJ DW WKH QRGH SRLQWHG

WR E\ H:PLQ DQG IROORZLQJ ULJKW SRLQWHUV� (DFK SDUW VKRZV WKH YDOXHV RI w DQG x DW WKH HQG RI DQ

LWHUDWLRQ� �I�±�K� 7KH QH[W LWHUDWLRQ RI WKH IRU ORRS� ZLWK WKH YDOXHV RI w DQG x VKRZQ DW WKH HQG RI

HDFK LWHUDWLRQ RI WKH ZKLOH ORRS RI OLQHV �±��� 3DUW �I� VKRZV WKH VLWXDWLRQ DIWHU WKH ¿UVW WLPH WKURXJK

WKH ZKLOH ORRS� 7KH QRGH ZLWK NH\ 23 KDV EHHQ OLQNHG WR WKH QRGH ZLWK NH\ 7� ZKLFK x QRZ SRLQWV WR�

,Q SDUW �J�� WKH QRGH ZLWK NH\ 17 KDV EHHQ OLQNHG WR WKH QRGH ZLWK NH\ 7� ZKLFK x VWLOO SRLQWV WR� ,Q

SDUW �K�� WKH QRGH ZLWK NH\ 24 KDV EHHQ OLQNHG WR WKH QRGH ZLWK NH\ 7� 6LQFH QR QRGH ZDV SUHYLRXVO\

SRLQWHG WR E\ AŒ3�� DW WKH HQG RI WKH IRU ORRS LWHUDWLRQ� AŒ3� LV VHW WR SRLQW WR WKH URRW RI WKH UHVXOWLQJ

WUHH�

Figure 6.4: A run of Consolidate

Fib-Heap-Link does this process of linking two heaps of same degree.

Page 41 Chapter 6 Dijkstra Algorithm with Data Structures

Of course in order to allocate array we have to know how to calculate the upper bound for 𝐷 (𝑛) on the maximum
degree. We will show an upper bound of 𝑂 (log𝑛) in subsection 6.5.5.

Now in Fib-Extract-Min in each iteration of the outer for loop or inner while loop it operates on one heap in
𝐹 .rootlist. Hence it takes 𝑂 (𝐷 (𝑛) + #heaps in 𝐹 .rootlist) time.

6.5.4 Decreasing Key of a Node

In this section we will show how to decrease a key of a node in a Fibonacci heap in 𝑂 (1) amortized time. The Fib-
Decrease-Key function decreases the key value of the target node then if the min-heap order the node is in is violated
then we use the Cascading-Cut function to restore the min-heap property again. These two functions operates like the
following:

Algorithm 26: Fib-Decrease-Key(𝐹 ,𝑥 ,𝑘)
1 if 𝑘 > 𝑥 .key then

2 return Error

3 𝑥 .key←− 𝑘
4 𝑦 ←− 𝑥 .parent
5 if 𝑦 ≠ 𝑁𝑜𝑛𝑒 and 𝑥 .key < 𝑦.key then

6 Cut(𝐹 ,𝑥 ,𝑦)
7 Cascading-Cut(𝐹 ,𝑦)
8 if 𝑘 < 𝐹 . min .key then

9 𝐹 . min←− 𝑥

Algorithm 27: Cascading-Cut(𝐹 ,𝑦)
1 if 𝑦.parent ≠ 𝑁𝑜𝑛𝑒 then
2 if 𝑦.lost == 0 then
3 𝑦.lost←− 1
4 else

5 Cut(𝐹 ,𝑦,𝑦.parent)
6 Cascading-Cut(𝐹 ,𝑦.parent)

Algorithm 28: Cut(𝐹 ,𝑥 ,𝑦)
1 Remove 𝑥 from 𝑦.child
2 𝑦.degree←− 𝑦.degree − 1
3 𝐹 .rootlist.append(𝑥)
4 𝑥 .parent←− 𝑁𝑜𝑛𝑒 , 𝑥 .lost←− 0

After decreasing the key of the target node if the min-heap order has been violated then we start by cutting the link
between 𝑥 and its parent and adding it to the rootlist. Let 𝑥 is a node in 𝐹 . At some time 𝑥 was a root. Then 𝑥 was linked

���� 'HFUHDVLQJ D NH\ DQG GHOHWLQJ D QRGH ���

��

��

�� ��

��

��

�� �

��

��

��

��

�� ��

�E�

��

��

�� ��

��

��� �

��

��

��

��

�� ��

�F�

��

��

�� ��

����� �

��

��

��

��

�� ��

�G�

��

��

��

��

����� �

��

��

��

��

�� ��

�H�

��

��

�� ��

��

��

��

�

��

��

��

��

�� ��

�D�

H:PLQ

H:PLQ

H:PLQH:PLQ

H:PLQ

)LJXUH ���� 7ZR FDOOV RI),%�+($3�'(&5($6(�.(<� �D� 7KH LQLWLDO)LERQDFFL KHDS� �E� 7KH

QRGH ZLWK NH\ 46 KDV LWV NH\ GHFUHDVHG WR 15� 7KH QRGH EHFRPHV D URRW� DQG LWV SDUHQW �ZLWK NH\ 24��

ZKLFK KDG SUHYLRXVO\ EHHQ XQPDUNHG� EHFRPHV PDUNHG� �F�±�H� 7KH QRGH ZLWK NH\ 35 KDV LWV NH\

GHFUHDVHG WR 5� ,Q SDUW �F�� WKH QRGH� QRZ ZLWK NH\ 5� EHFRPHV D URRW� ,WV SDUHQW� ZLWK NH\ 26�

LV PDUNHG� VR D FDVFDGLQJ FXW RFFXUV� 7KH QRGH ZLWK NH\ 26 LV FXW IURP LWV SDUHQW DQG PDGH DQ

XQPDUNHG URRW LQ �G�� $QRWKHU FDVFDGLQJ FXW RFFXUV� VLQFH WKH QRGH ZLWK NH\ 24 LV PDUNHG DV ZHOO�

7KLV QRGH LV FXW IURP LWV SDUHQW DQG PDGH DQ XQPDUNHG URRW LQ SDUW �H�� 7KH FDVFDGLQJ FXWV VWRS

DW WKLV SRLQW� VLQFH WKH QRGH ZLWK NH\ 7 LV D URRW� �(YHQ LI WKLV QRGH ZHUH QRW D URRW� WKH FDVFDGLQJ

FXWV ZRXOG VWRS� VLQFH LW LV XQPDUNHG�� 3DUW �H� VKRZV WKH UHVXOW RI WKH),%�+($3�'(&5($6(�.(<

RSHUDWLRQ� ZLWKH:PLQ SRLQWLQJ WR WKH QHZ PLQLPXP QRGH�

),%�+($3�'(&5($6(�.(< FUHDWHV D QHZ WUHH URRWHG DW QRGH x DQG FOHDUV x¶V

PDUN ELW �ZKLFK PD\ KDYH DOUHDG\ EHHQ)$/6(�� (DFK FDOO RI &$6&$',1*�&87�

H[FHSW IRU WKH ODVW RQH� FXWV D PDUNHG QRGH DQG FOHDUV WKH PDUN ELW� $IWHUZDUG� WKH

)LERQDFFL KHDS FRQWDLQV t.H/Cc WUHHV �WKH RULJLQDO t.H/ WUHHV� c�1 WUHHV SURGXFHG

E\ FDVFDGLQJ FXWV� DQG WKH WUHH URRWHG DW x� DQG DW PRVWm.H/�cC2PDUNHG QRGHV

�c �1ZHUH XQPDUNHG E\ FDVFDGLQJ FXWV DQG WKH ODVW FDOO RI &$6&$',1*�&87 PD\

KDYH PDUNHG D QRGH�� 7KH FKDQJH LQ SRWHQWLDO LV WKHUHIRUH DW PRVW

..t.H/ C c/ C 2.m.H/ � c C 2// � .t.H/ C 2 m.H// D 4 � c :

Figure 6.5: A run of Cascading-Cut. First Fib-Decrease-Key(𝐹 , 46, 15) and then Fib-Decrease-Key(𝐹 , 35, 5) are called.

to another node. Suppose at some time two children of 𝑥 were removed by cuts. As soon as second child has been lost
we cut 𝑥 from its parent and make it a new root. But we are not done yet. Since 𝑥 might be the second child cut from its

6.5 Data Structure 3: Fibonacci Heap Page 42

parent. So we have to check for its parent. Therefore, we recursively run Cascading-Cut on its parent till we reach the
root or cut the first child from a node.

Notice at each run of Cascading-Cut the lost bit of a node is getting reset. Therefore, the total time taken by
Fib-Decrease-Key is 𝑂 (1 + #lost bits reset).

6.5.5 Bounding the Maximum Degree

To prove that the amortized time of Fib-Extract-Min and Fib-Decrease-Key are 𝑂 (log𝑛) and 𝑂 (1) we must show that
upper bound of the maximum degree of any node after Consolidate function is 𝑂 (log𝑛). In particular, we will show its⌊
log𝜙 𝑛

⌋
where 𝜙 is the golden ratio.

Lemma 6.5.1
Let 𝑥 be any node in a Fibonacci heap, and suppose that 𝑥 .degree = 𝑘 . Let 𝑦1, . . . ,𝑦𝑘 denote the children of 𝑥 in the
order in which they were linked to 𝑥 from the earliest to the latest. Then 𝑦1.degree ≥ 0 and 𝑦𝑖 .degree ≥ 𝑖 − 2 for
𝑖 = 2, . . . ,𝑘 .

Proof: Obviously 𝑦1.degree ≥ 0. The only function that adds a child to a node is the function Consolidate. Now for
𝑖 ≥ 2, 𝑦𝑖 was linked to 𝑥 when all of 𝑦1, . . . ,𝑦𝑖−1 were children of 𝑥 , and therefore we must have had 𝑥 .degree ≥ 𝑖 − 1.
Because node 𝑦𝑖 is linked to 𝑥 only if 𝑥degree = 𝑦𝑖 .degree we must also have 𝑦𝑖 .degree ≥ 𝑖 − 1. Since then node 𝑦𝑖 has lost
at most one child, since it would have been cut from 𝑥 by Cascading-Cut if it had lost two children. We conclude that
𝑦𝑖 .degree ≥ 𝑖 − 2. ■

Lemma 6.5.2
Let 𝑥 be a node in a Fibonacci heap and let 𝑘 = 𝑥 .degree. Then

size(𝑥) ≥ 𝐹𝑘+2 ≥ 𝜙𝑘

Proof: We will prove this using induction. For 𝑘 = 0, 𝐹2 = 1 so this is obviously true. For 𝑘 = 1 there is one child of 𝑥 .
Hence, size(𝑥) = 2 = 𝐹3. Suppose this is true for 1, . . . ,𝑘 − 1. Let 𝑦1, . . . ,𝑦𝑘 are the children of 𝑥 in the order in which they
were linked to 𝑥 . By the above lemma we have 𝑦1.degree ≥ 0 and 𝑦𝑖 .degree ≥ 𝑖 − 2 for all 𝑖 = 2, . . . ,𝑘 . Hence, by Induction
hypothesis we have size(𝑦𝑖) ≥ 𝐹𝑖−2 for all 𝑖 = 2, . . . ,𝑘 . Therefore,

size(𝑥) ≥ 1 +
𝑘∑︁
𝑖=1

size(𝑦𝑘) ≥ 2 +
𝑘∑︁
𝑖=2

𝐹𝑖 = 1 +
𝑘∑︁
𝑖=1

𝐹𝑖 = 𝐹𝑘+2 ≥ 𝜙𝑘

Hence, we have the lemma. ■

Corollary 6.1
The maximum degree of any node in Consolidate, 𝐷 (𝑛) = 𝑂 (log𝑛).

6.5.6 Time Complexity Analysis of Dijkstra

Now we will calculate the amortized time of Dijkstra algorithm. Before that we will calculate the amortized cost of
the data structure. Let in an algorithm Fib-Extract-Min was called 𝑡 times. Therefore, total cost of all 𝑡 many Fib-
Extract-Min calls is 𝑂 (𝑡 log𝑛 + total #heaps created). Now heaps are created because of Fib-Extract-Min functions
and Fib-Decrease-Key function. We know Fib-Extract-Min were called 𝑡 times and each time it created𝑂 (log𝑛) heaps.
Hence, in total Fib-Extract-Min created 𝑂 (𝑡 log𝑛) heaps. Therefore, time taken by the 𝑡 many Fib-Extract-Min calls
is 𝑂 (𝑡 log𝑛 + #Fib-Decrease-Key calls).

Now suppose in that algorithm the function Fib-Decrease-Key were called 𝑘 times. Hence, this takes 𝑂 (𝑘 +
#total number of lost bits reset) = 𝑂 (𝑘 + #total number of lost bits set) time. Now the lost bits are set only by the

Page 43 Chapter 6 Dijkstra Algorithm with Data Structures

Fib-Decrease-Key. Therefore, #total number of lost bits rset = #Fib-Decrese-Key was called. Therefore, the total time
taken by all the Fib-Decrese-Key calls is 𝑂 (𝑘).

Hence, in an algorithm if 𝑡 times Fib-Extract-Min was called and 𝑘 times Fib-Decrese-Key was called then total
time taken by Fib-Extract-Min is 𝑂 (𝑡 log𝑛 + 𝑘) and total time taken by Fib-Decrese-Key is 𝑂 (𝑘). Therefore, amortized
time taken by Fib-Extract-Min is 𝑂 (𝑡

𝑘
log𝑛) and by Fib-Decrese-Key is 𝑂 (1).

Now in the Dijkstra algorithm Fib-Extract-Min is called𝑛 times and Fib-Decrese-Key is called𝑂 (𝑚) times where
𝑛 is the number of vertices in the graph and 𝑚 is the number of edges in the graph. Hence, the amortized cost of Fib-
Extract-Min is 𝑂 (log𝑛) and Fib-Decrease-Key is 𝑂 (1). Therefore, using Fibonacci heap Dijkstra takes (𝑛 log𝑛 +𝑚)
time.

Chapter 7
Kruskal’s Algorithm with Data

Structures

Minimum Spanning Tree
Input: Weighted undirected graph 𝐺 = (𝑉 ,𝐸) and weights of edges𝑊 = {𝑤𝑒 ∈ Z0 : 𝑒 ∈ 𝐸}.
Question: Find a spanning tree 𝑇 ⊆ 𝐸 such that

∑
𝑒∈𝑇

𝑤𝑒 is minimum.

In this chapter we will discuss this problem. We will first discuss the Kruskal’s algorithm which gives a greedy
solution to the problem. Then we will discuss the data structure that we can use to implement the Kruskal’s algorithm
efficiently. We assume the graph is connected otherwise the algorithm can use a DFS to check connectivity.

7.1 Kruskal’s Algorithm

6

3
14

12

2

7

15
18

24

16

5

10

9

Kruskal
Algorithm

6

3
14

12

2

7

15
18

24

16

5

10

9

The Kruskal’s algorithm uses a concept of component to find the minimum spanning tree.

Definition 7.1.1: Component

In a graph 𝐺 = (𝑉 ,𝐸), a component is a maximal subgraph 𝐺 ′ = (𝑉 ′,𝐸′) of 𝐺 such that

(1) (𝑉 ′,𝐸′) is connected.

(2) ∀ 𝑣 ∉ 𝑉 ′, there is no edge 𝑒 ∈ 𝐸 such that 𝑒 connects 𝑣 to any vertex in 𝑉 ′.

Page 45 Chapter 7 Kruskal’s Algorithm with Data Structures

In Kruskal’s algorithm we maintain a set of components each of them is a tree so basically we maintain a forest.
And we find a safe edge which is always the least weight edge in the graph that connects two distinct components and
adds that edge to the collection of edges in the forest and update the components.

So the algorithm first sorts the edges in non-decreasing order of their weights. Then it initializes a forest 𝐹 with
all the vertices in the graph and no edges. Then it iterates through the sorted edges and checks if the edge connects
two distinct components. If it does, then it adds the edge to the forest and merges the two components. The algorithm
stops when we have 𝑛 − 1 edges in the forest. We have shown in Lemma 5.3.5 that the set of collection of acyclic sets in

Algorithm 29: Kruskal’s Algorithm
Input: 𝐺 = (𝑉 ,𝐸), and weights of edges𝑊 = {𝑤𝑒 ∈ Z0 : 𝑒 ∈ 𝐸}
Output: A minimum spanning tree 𝑇 ⊆ 𝐸 of 𝐺

1 begin

2 𝑇 ←− ∅
3 Sort the edges in 𝐸 in non-decreasing order of their weights so that𝑤 (𝑒1) ≤ 𝑤 (𝑒2) ≤ · · · ≤ 𝑤 (𝑒𝑚)
4 for 𝑖 = 1, . . . ,𝑚 do

5 Let 𝑒𝑖 = (𝑢, 𝑣)
6 if 𝑇 ∪ {𝑒𝑖 } is acyclic then
7 𝑇 ←− 𝑇 ∪ {𝑒𝑖 }
8 if |𝑇 | = |𝑉 | − 1 then
9 return 𝑇

any graph is a matroid. Hence, here we are basically finding a base of the graphic matroid with minimum weight. The
algorithm is exactly similar to the greedy algorithm for finding max-weight base of a matroid in subsection 5.3.2. So you
can use the similar arguments to show that the algorithm is correct and returns the minimum spanning tree of the graph.

Now in the algorithm the checking of𝑇 ∪ {𝑒𝑖 } is acyclic can be done by checking if both the end points are in same
component or not. And if they are not then we need to combine those to components. But there comes a question:

Question 7.1

What it means to give a component?

We will use some vertex to represent the component. We keep a pointer 𝑣 .parent for each vertex which points to
representative of component 𝑣 is in. Hence, we need a data structure that can do the following two operations efficiently:

• Find(𝑢): Returns the component 𝑢 is in.

• Union(𝑢, 𝑣): Merges the components of 𝑢 and 𝑣 into a single component.

So we can use the updated algorithm to implement the Kruskal’s algorithm using proper data structure: The Kruskal’s

Algorithm 30: Kruskal’s Algorithm
Input: 𝐺 = (𝑉 ,𝐸), and weights of edges𝑊 = {𝑤𝑒 ∈ Z0 : 𝑒 ∈ 𝐸}
Output: A minimum spanning tree 𝑇 ⊆ 𝐸 of 𝐺

1 begin

2 𝑇 ←− ∅
3 Sort the edges in 𝐸 in non-decreasing order of their weights so that𝑤 (𝑒1) ≤ 𝑤 (𝑒2) ≤ · · · ≤ 𝑤 (𝑒𝑚)
4 for 𝑖 = 1, . . . ,𝑚 do

5 Let 𝑒𝑖 = (𝑢, 𝑣)
6 if Find(𝑢) ≠ Find(𝑣) then
7 𝑇 ←− 𝑇 ∪ {𝑒𝑖 }
8 Union(𝑢, 𝑣)
9 if |𝑇 | = |𝑉 | − 1 then
10 return 𝑇

7.2 Data Structure 1: Linear Array Page 46

Algorithm calls𝑚 times the Find operation and 𝑛 times the Union operation.

7.2 Data Structure 1: Linear Array

We create an 𝑛 length array 𝐴 which hold the parent pointer of each vertex. Initially for all vertices 𝐴[𝑣] = 𝑣 . So
Array-Find(𝑢) will just return 𝐴[𝑢]. Hence, Find takes 𝑂 (1) time. For Union(𝑢, 𝑣) we use the following: Therefore,

Algorithm 31: Array-Union(𝑢, 𝑣)
1 if 𝐴[𝑢] ≠ 𝐴[𝑣] then
2 for 𝑖 = 1, . . . ,𝑛 do

3 if 𝐴[𝑖] == 𝐴[𝑣] then
4 𝐴[𝑖] ←− 𝐴[𝑢]

Array-Union(𝑢, 𝑣) takes 𝑂 (𝑛) time. Hence, the time complexity of the Kruskal’s algorithm using this data structure is
𝑚 ·𝑂 (1) +𝑛 ·𝑂 (𝑛) = 𝑂 (𝑚 +𝑛2) = 𝑂 (𝑛2).

7.3 Data Structure 2: Left Child Right Siblings Tree

Using an array is not efficient enough. One place we can optimize is if given the components is there a faster way to get
the vertices in the component? We can use the following tricks to optimize:

1. For every representative of a component, store pointers to all vertices in that component.

2. Change representative for the smaller component while doing Union(𝑢, 𝑣).

7.3.1 Construction

So now every representative of a component we point to one vertex which is also in the component. And from that vertex
we can iterate through all the vertices in that component. So basically we can imagine a 2 level tree where all the children
point towards the root which is the representative of the component. The root points to one of the children take the left
most child. And then all the other children points to the immediate right child of the root.

Initially we had:
Want

Want

Now we will do:

Figure 7.1: Left Child Right Sibling

We can also store a variable to store the number of vertices in the component so that we can use it to compare the size of
two components and then update for the smaller one. Therefore, the data structure now stores:

• 𝑣 .parent for each 𝑣 which points to the vertex representing the component 𝑣 is in.

• 𝑣 .size for size of the component for each component representative 𝑣 .

• 𝑣 .left for the left most child for each component representative 𝑣 .

• 𝑣 .right for the immediate right sibling of 𝑣 for all vertices in a component which are not representatives of the
components.

This data structure is called Left Child Right Sibling. So in this data structure the LCRS-Find(𝑢) just returns the value of
𝑢.parent. Hence, LCRS-Find takes 𝑂 (1) time.

Page 47 Chapter 7 Kruskal’s Algorithm with Data Structures

7.3.2 LCRS-Union Function

For the LCRS-Union function we do the following

Algorithm 32: LCRS-Union(𝑢, 𝑣)
1 𝑢𝑝 ←− 𝑢.parent
2 𝑣𝑝 ←− 𝑣 .parent
3 if 𝑢𝑝 ≠ 𝑣𝑝 then

4 if 𝑢𝑝 == 𝑢 then

5 𝑢.parent←− 𝑣𝑝
6 𝑢.right←− 𝑣𝑝 .left
7 𝑣𝑝 .left←− 𝑢
8 𝑣𝑝 .size←− 𝑣𝑝 .size + 1
9 else if 𝑢𝑝 .size ≤ 𝑣𝑝 .size then
10 𝑢𝑝 .right←− 𝑢
11 𝑥 ←− 𝑢𝑝
12 while 𝑥 .right == 𝑁𝑜𝑛𝑒 do
13 𝑥 .parent←− 𝑣𝑝 , 𝑥 ←− 𝑥 .right
14 𝑥 .right←− 𝑣𝑝 .left, 𝑣𝑝 .left←− 𝑢𝑝 .left
15 𝑣𝑝 .left←− 𝑢𝑝
16 𝑣𝑝 .size←− 𝑣𝑝 .size + up.𝑠𝑖𝑧𝑒
17 else

18 𝑣𝑝 .right←− 𝑣
19 𝑥 ←− 𝑣𝑝
20 while 𝑥 .right == 𝑁𝑜𝑛𝑒 do
21 𝑥 .parent←− 𝑢𝑝 , 𝑥 ←− 𝑥 .right
22 𝑥 .right←− 𝑢𝑝 .left, 𝑢𝑝 .left←− 𝑣𝑝 .left
23 𝑢𝑝 .left←− 𝑣𝑝
24 𝑢𝑝 .size←− 𝑢𝑝 .size + vp.𝑠𝑖𝑧𝑒

Below we have shown how the LCRS-Union function works. This way we can unite two components and update the

(a) 𝑢𝑝 𝑣𝑝

𝑣𝑢

(b)

𝑢𝑝

𝑣𝑝

right
𝑣𝑢

(c)

𝑢𝑝

𝑣𝑝

right

par
ent

pa
re
nt

𝑣𝑢

(d)

𝑢𝑝

𝑣𝑝

right

par
ent

pa
re
nt

right 𝑣𝑢

(e)

𝑢𝑝

𝑣𝑝

𝑣𝑢

left
(f)

𝑣𝑢

Figure 7.2: A run of LCRS-Union(𝑢, 𝑣)

corresponding component representative in the vertices of the smaller component. In the next section we will analyze
the amortized time complexity of the LCRS-Union function

7.4 Data Structure 3: Union Find Page 48

7.3.3 Amortized analysis of LCRS-Union

Lemma 7.3.1
For any vertex 𝑣 ∈ 𝑉 , 𝑣 .parent can change at most 𝑂 (log𝑛) times.

Proof: Initially size of 𝑣 ’s component is 1. Each time 𝑣 .parent is changed the size of the component 𝑣 is in becomes at
least double. Therefore, at most 𝑂 (log𝑛) times 𝑣 .parent can change. ■

Now since there are 𝑛 vertices at most 𝑂 (𝑛 log𝑛) times change of parent for any vertex happens. Now change
of parent for any vertex happens only in LCRS-Union function. Total time taken by all the LCRS-Union operations is
𝑂 (𝑛 log𝑛) time. Since LCRS-Union was called 𝑛 times the amortized cost of LCRS-Union is 𝑂 (log𝑛).

7.3.4 Time Complexity Analysis of Kruskal

We have shown above that LCRS-Find takes𝑂 (1) time and amortized cost of LCRS-Union is𝑂 (log𝑛). Since LCRS-Find
is called𝑚 times and LCRS-Union is called 𝑛 times the total run time of Kruskal’s Algorithm using the Left Child Right
Sibling data structure is 𝑂 (𝑚 +𝑛 log𝑛).

7.4 Data Structure 3: Union Find

We will now give up on the idea of height 1 trees to optimize more. Representative of a component is still vertex at root,
but we will do the following: changes:

• Union just changes parent pointers of root nodes, but it takes 𝑂 (1).

• Instead of size, we will maintain a variable rank of a component roughly which can be thought of as height of the
component.

• For Union root of smaller rank will be changed to point to root of the component of larger rank.

• The Find operation does something called path compression which we will explain later.
To implement this data structure we will use a tree for each component and every node has a parent pointer. And there
we will use the Find and Union operations.

Our goal is to run Kruskal’s algorithm in almost𝑂 (𝑛 +𝑚) time. More precisely𝑂 ((𝑛 +𝑚) log∗ 𝑛) time where log∗ 𝑛
is the number of times we need to compose log on 𝑛 to get 1.

7.4.1 Find Operation

The Find operation does something called path compression i.e. for any vertex 𝑣 ∈ 𝑉 , if Find(𝑣) is called then it starts
from 𝑣 changes it’s parent to the root of the component 𝑣 is in, and then it moves to its parent and changes his parent to
be the root and move to his parent and keep on doing like that till it reaches the root. In other words in path from the
root to 𝑣 , for every vertex in that path the Find operation changes the parent pointer to the root.

𝑣1

𝑣3𝑣2

𝑣4 𝑣5 𝑣6

𝑣9𝑣8𝑣7

𝑣1

𝑣3𝑣2𝑣4

𝑣5 𝑣6𝑣7𝑣8

𝑣9
Find(𝑣9)

Figure 7.3: Path compression during Find(𝑣9) operation
Here is the pseudocode of the Find operation below: We will not discuss the amortized cost of this operation. Instead, we
will do it in subsection 7.4.3.

Page 49 Chapter 7 Kruskal’s Algorithm with Data Structures

Algorithm 33: Find(𝑣)
1 if 𝑣 .parent ≠ 𝑣 then
2 𝑣 .parent←− Find(𝑣 .parent)
3 return 𝑣 .parent

7.4.2 Union Operation

For the Union operation we change the root of smaller rank to point to the root of the component of larger rank. So for the
Union(𝑢, 𝑣) operation we assume that 𝑢, 𝑣 are the roots of their respective components. Since in Union(𝑢, 𝑣) we assume

Algorithm 34: Union(𝑢, 𝑣)
1 if 𝑢.rank > 𝑣 .rank then

2 𝑣 .parent←− 𝑣
3 else if 𝑣 .rank > 𝑢.rank then

4 𝑢.parent←− 𝑣
5 else

6 𝑣 .parent←− 𝑢
7 𝑢.rank←− 𝑣𝑢.rank + 1

𝑢, 𝑣 are component representatives before using Union(𝑢, 𝑣) we use Find on 𝑢 and 𝑣 to get the roots of their components,
and then we apply Union on the roots. Hence, Union(𝑢, 𝑣) takes 𝑂 (1) time.

7.4.3 Analyzing the Union-Find Data-Structure

We call a node in the union-find data-structure a leader if it is the root of the tree.

Lemma 7.4.1
Once a node stop being a leader (i.e. the node in top of a tree). It can never become a leader again.

Proof: A node 𝑥 stops being a leader only because of the Union operation which made 𝑥 child of a node 𝑦 which is a
leader of a tree. From this point on, the only operation that might change the parent pointer of 𝑥 is the Find operation
which traverses through 𝑥 . Since path-compression only change the parent pointer of 𝑥 to point to some other node 𝑦.
Therefore, the parent pointer of 𝑥 will never become equal to itself i.e. 𝑥 can never be a leader again. Hence, once 𝑥 stops
being a leader it can never be a leader again. ■

Lemma 7.4.2
Once a node stop being a leader then its rank is fixed.

Proof: The rank of a node changes only by a Union operation. But the Union operation only changes the rank of nodes
that are leader after the operation is done. Therefore, once a node stops being a leader it’s rank will not being changed by
a Union operation. Hence, once a node stop being a leader then its rank is fixed. ■

Lemma 7.4.3
Ranks are monotonically increasing in the trees, as we travel from a node to the root of the tree.

Proof: To show that the ranks are monotonically increasing it suffices to prove that for all edge 𝑢 → 𝑣 in the data
structure we have rank(𝑢) < rank(𝑣). And this is true because the Union operation only changes the parent pointer

7.4 Data Structure 3: Union Find Page 50

of a node 𝑢 to point to a node 𝑣 if 𝑢 and 𝑣 were leaders and either rank(𝑢) < rank(𝑣) before making the change or
rank(𝑢) = rank(𝑣) before making the change and then the algorithm increases the rank of 𝑣 by 1. Hence, the ranks are
monotonically increasing in the trees, as we travel from a node to the root of the tree. ■

Lemma 7.4.4
When a node gets rank 𝑘 than there are at least ≥ 2𝑘 elements in its subtree.

Proof: We’ll prove it using induction. For 𝑘 = 0 it is obvious since a single element in the set. Now a node gets rank
𝑘 only if two roots of rank 𝑘 − 1 were merged. By inductive hypothesis they each have at least ≥ 2𝑘−1 nodes in their
subtrees. Hence, the merged tree has ≥ 2𝑘−1 + 2𝑘−1 = 2𝑘 nodes. ■

With this lemma we get the following corollaries:

Corollary 7.4.5
The following are true:

1. The number of nodes that get assigned rank 𝑘 throughout the execution of the Union-Find data-structure is
at most 𝑛

2𝑘 .

2. For all vertices 𝑣 , 𝑣 .𝑟𝑎𝑛𝑘 ≤ ⌊log𝑛⌋

3. Height of any tree ≤
⌊
log2 𝑛

⌋
Lemma 7.4.6
The time to perform a single find operation when we perform union by rank and path compression is 𝑂 (log𝑛)
time.

We will show that we can do much better. In fact, we will show that for𝑚 operations over 𝑛 elements the overall
running time is 𝑂 ((𝑛 +𝑚) log∗ 𝑛)

Definition 7.4.1: log∗ 𝑛

It is the number of times we need to take log to get less than or equal to 1. So

log∗ 𝑛 =

{
0 if 𝑛 ≤ 1
1 + log∗ (log𝑛) otherwise

Thus log∗ 2 = 1, log∗ 22 = 2. Similarly, log∗ 222 = 1 + log∗ 22 = 2 + log∗ 2 = 3. It will also be useful to look at the inverse
function of log∗, Tower.

Definition 7.4.2: Tower (𝑘)

Tower(𝑘) = 2Tower(𝑘−1) and Tower(0) = 1.

Observation 7.1. log∗ (Tower(𝑘)) = 𝑘

Let Block(𝑖) denotes a subset of vertices, and it corresponds to the interval [Tower(𝑖 − 1) + 1, Tower(𝑖)]. We corre-
spond Block(0) with the interval [0, 1]. Then we say a node 𝑣 ∈ Block(𝑖) if 𝑣 .rank ∈ [Tower(𝑖 − 1) + 1, Tower(𝑖)].

Observation 7.2. The largest 𝑘 such that for all 𝑡 > 𝑘 , Block(𝑡) = ∅ will be 𝑘 = log∗ 𝑛.

This is because

Block(𝑘) =
{
𝑣 | 𝑣 .rank ∈

[
Tower (log∗ 𝑛 − 1) + 1, Tower (log∗ 𝑛)

]}
=

{
𝑣 | 𝑣 .rank ∈

[
log𝑛 + 1,𝑛

]}

Page 51 Chapter 7 Kruskal’s Algorithm with Data Structures

Hence the number of blocks available is 𝑂 (log∗ 𝑛).
Now we will analyze the Find(𝑣) operation. Let 𝑃 be the path visited. Let 𝑃 = 𝑣 = 𝑣0 → 𝑣1 → · · · → 𝑣𝑘 = root.

Now consider the ranks of the vertices in 𝑃 . We will have

𝑣0.rank < 𝑣1.rank < · · · < 𝑣𝑘 .rank

Imagine partitioning 𝑃 into which blocks each element rank belongs to. Let index𝐵 (𝑣) is the index of the block that
contains 𝑣 . Since ranks of the vertices are strictly increasing index𝐵 (𝑣) is also increasing.

During Find operation let going from one block to another is called jumping between blocks and going from one
vertex to another inside a block is called internal jump. We call a vertex small if the vertex and its parent are in same
block. Otherwise, we call the vertex large.

Lemma 7.4.7
During a single Find(𝑥) operation, the number of jumps between blocks along the search path is 𝑂 (log∗ 𝑛).

Proof: During Find operation since the ranks are strictly increasing once we pass through from a node in 𝑖𝑡ℎ block to
a node in (𝑖 + 1)𝑡ℎ block we can never go back to the 𝑖𝑡ℎ block. So in a Find operation we can do jumps between blocks at
most 𝑂 (log∗ 𝑛) times. ■

Therefore, there can be at most 𝑂 (log∗ 𝑛) many large vertices encountered in any Find operation.

Lemma 7.4.8
At most |Block(𝑖) | ≤ Tower(𝑖) many Find operations can pass through an element 𝑥 which is in the 𝑖𝑡ℎ block (i.e.
index𝐵 (𝑥) = 𝑖) before 𝑥 .parent is no longer in the 𝑖𝑡ℎ block. That is index𝐵 (𝑥 .parent) > 𝑖 .

Proof: Now consider the case that 𝑣 and 𝑣 .parent are both in the same block. Let 𝑣 .parent is not root. Now we perform a
Find operation that passes through 𝑥 . Let 𝑟𝑏𝑒𝑓 is the 𝑣 .parent.rank before the Find operation and 𝑟𝑎𝑓 𝑡 is the 𝑣 .parent.rank
after the Find operation. By path compression we have 𝑟𝑎𝑓 𝑡 > 𝑟𝑏𝑒 𝑓 .

By the above discussion we have that the parent of a vertex 𝑣 increases its rank every-time an internal jump goes
through 𝑣 . Since there are at most |Block(𝑖) | different values in 𝑖𝑡ℎ block and by definition we have |Block(𝑖) | ≤ Tower(𝑖)
we have the lemma. ■

Hence any vertex 𝑣 appears small at most Tower(𝑖) times over the course of Find operations that passes through 𝑣 .

Lemma 7.4.9
There are at most 𝑛

Tower(𝑖) nodes that have ranks in the 𝑖𝑡ℎ block throughout the algorithm execution.

Proof: By Corollary 7.4.5 we have that the number of elements with rank in the 𝑖𝑡ℎ block is at most
Tower(𝑖)∑︁

𝑘=Tower(𝑖−1)+1

𝑛

2𝑘
= 𝑛

Tower(𝑖)∑︁
𝑘=Tower(𝑖−1)+1

1
2𝑘
≤ 𝑛

2Tower(𝑖−1)
=

𝑛

Tower(𝑖)

■

Lemma 7.4.10
The number of internal jumps performed, inside the 𝑖𝑡ℎ block, during the lifetime of Union-Find data structure is
𝑂 (𝑛).

Proof: A vertex 𝑣 in the 𝑖𝑡ℎ block can have at most |Block(𝑖) | internal jumps, before all jumps through 𝑣 are jumps
between block by Lemma 7.4.5. There are at most 𝑛

Tower(𝑖) vertices with ranks in 𝑖𝑡ℎ block through out the algorithm ex-
ecution by Lemma 7.4.9. Thus, the total number of internal jumps is |Block(𝑖) | · 𝑛

Tower(𝑖) ≤ Tower(𝑖) · 𝑛
Tower(𝑖) = 𝑛. Hence

there are at most 𝑂 (𝑛) many internal jumps. ■

7.4 Data Structure 3: Union Find Page 52

Theorem 7.4.11
The number of internal jumps performed by the Union-Find data structure overall 𝑂 (𝑛 log∗ 𝑛).

Proof: Since in each block the number of internal jumps is 𝑂 (𝑛) and there are 𝑂 (log∗ 𝑛) many blocks we have total
number of internal jumps by the Union-Find data structure is 𝑂 (𝑛 log∗ 𝑛). ■

Hence over the course of all Find operations the total number of small vertices can be encountered is 𝑂 (𝑛 log∗ 𝑛)

Theorem 7.4.12
The overall time spent on𝑚 Find operations, throughout the lifetime of a Union-Find data structure defined over
𝑛 elements is 𝑂 ((𝑛 +𝑚) log∗ 𝑛).

Proof: With𝑚 many Find operations the total number of small vertices encountered is𝑂 (𝑛 log∗ 𝑛) as we proved earlier.
And the total number of large vertices encountered is 𝑂 (𝑚 log∗ 𝑛) since each Find can encounter 𝑂 (log∗ 𝑛) many large
vertices by Lemma 7.4.7. Hence total taken is 𝑂 ((𝑚 +𝑛) log∗ 𝑛). ■

Chapter 8
Red Black Tree Data Structure

A red-black tree is a special type of binary search tree with one extra bit of storage per node, its color which can be either
red or black. Also, we keep the tree approximately balanced by enforcing some properties on the tree.

Definition 8.1: Perfect Binary Tree

It is a Binary Tree in which every internal node has exactly two children and all leaves are at the same level.

Lemma 8.1
Every perfect binary tree with 𝑘 leaves has 2𝑘 − 1 nodes (i.e. 𝑘 − 1 internal nodes).

Definition 8.2: Red Black Tree

A red-black tree is a binary tree with the following prop-
erties:

• Every internal node is key/NIL node. Every leaf is
a “NIL” node.

• Each node (NIL and key) is colored either red or
black.

• Root and NIL nodes are always black.

• Any child of a red node is black.

• The path from root to any leaf has the same number
of black nodes.

29

14

6

NIL NIL

24

18

NIL NIL

26

NIL NIL

37

NIL 66

NIL NIL

Figure 8.1: A Red Black Tree

We call the number of black nodes on any simple path from but not including a node 𝑥 down to a leaf the black-
height of the node, denoted by 𝑏ℎ(𝑥). We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values.

Lemma 8.2
A Red-Black Tree with 𝑛 internal nodes or key nodes has height at most 𝑂 (log𝑛).

Proof: We will first show that for any subtree rooted at node 𝑥 contains at least 2𝑏ℎ (𝑥) − 1 internal nodes. We will show
this using induction on the height of the tree. For the base case let height of 𝑥 is 1. Then 𝑥 must be a leaf. Therefore,
the subtree rooted at 𝑥 has at least 𝑏ℎ(𝑥) = 1. Hence, 2𝑏ℎ (𝑥) − 1 = 21 − 1 = 1 nodes which is true. For inductive step
let 𝑥 has height greater than 1, and it is an internal node of the R-B Tree. Now 𝑥 has two children. Hence, each child
has black-height either 𝑏ℎ(𝑥) or 𝑏ℎ(𝑥) − 1. By inductive hypothesis, the subtrees rooted at the children of 𝑥 have at least
2𝑏ℎ (𝑥)−1 − 1 internal nodes. Thus, subtree rooted at 𝑥 has at least 2𝑏ℎ (𝑥)−1 − 1 + 2𝑏ℎ (𝑥)−1 − 1 + 1 = 2𝑏ℎ (𝑥) − 1 internal nodes.

8.1 Rotation Page 54

Now if the R-B tree has height ℎ. Then any path from the root to a leaf at least half the nodes including the root
must be black. So 𝑏ℎ(root) ≥ ℎ

2 . Thus, 𝑛 ≥ 2ℎ
2 − 1 =⇒ ℎ ≤ 2 log(𝑛 + 1). Hence, we have the lemma. ■

Note:-

NIL

NIL

NIL NIL

Not all trees can be colored in a way that satisfies the properties of a red-black
tree. Consider the following tree:

In this example the root has to be black. The other two internal nodes can
not be black since otherwise the path from the leaf of the root to root has only 2
black nodes but in the path from bottom most leaf to root will have 3. Then those
two internal nodes has to be red. But that violates the property that a red node
can not have a red child. Hence, this tree can not be colored in a way that satisfies
the properties of a red-black tree.

Since by the lemma the R-B tree has height at most 𝑂 (log𝑛) and it is a binary search tree we can perform search
of a node using Find in 𝑂 (log𝑛) time. So now we will focus on the insertion and deletion operations in a red-black tree.
To insert or delete a node in a red-black tree we will do rotations to balance the tree again. So first we will visit rotations.

8.1 Rotation

A rotation is a local operation that changes the structure of a binary tree without violating the binary search tree property.
There are two types of rotations: left rotation and right rotation.

When we do a left rotation on a node we assume that its right child is not NIL. The left rotation “pivots” around the
link from the node to its right child and makes the right child the new root of the subtree with the node as its left child.
Similarly, we can explain the right rotation. The rotations behave like the following:

𝑢

𝑣

𝛼 𝛽

𝛾

𝑣

𝛼 𝑢

𝛽 𝛾

Right Rotate

Left Rotate

Figure 8.2: Left and Right rotate about 𝑢 − 𝑣

Algorithm 35: Left-Rotate(𝑇 ,𝑥)
1 𝑦 ←− 𝑥 .right
2 𝑥 .right←− 𝑦.left
3 if 𝑦.left ≠ NIL then

4 𝑦.left.parent←− 𝑥
5 𝑦.parent←− 𝑥 .parent
6 if 𝑥 .parent == NIL then

7 𝑇 .root←− 𝑦
8 else if 𝑥 == 𝑥 .parent.left then

9 𝑥 .parent.left←− 𝑦
10 else

11 𝑥 .parent.right←− 𝑦
12 𝑦.left←− 𝑥
13 𝑥 .parent←− 𝑦

Algorithm 36: Right-Rotate(𝑇 ,𝑥)
1 𝑦 ←− 𝑥 .left
2 𝑥 .left←− 𝑦.right
3 if 𝑦.right ≠ NIL then

4 𝑦.right.parent←− 𝑥
5 𝑦.parent←− 𝑥 .parent
6 if 𝑥 .parent == NIL then

7 𝑇 .root←− 𝑦
8 else if 𝑥 == 𝑥 .parent.left then

9 𝑥 .parent.left←− 𝑦
10 else

11 𝑥 .parent.right←− 𝑦
12 𝑦.right←− 𝑥
13 𝑥 .parent←− 𝑦

Both Left-Rotate and Right-Rotate take𝑂 (1) time. Only some constantlymany pointers are changed by rotation
all other attributes in a node remain the same.

Page 55 Chapter 8 Red Black Tree Data Structure

8.2 Insertion

We will now describe how to insert a node in a red-black tree in𝑂 (log𝑛) time. We will insert the node in the tree in place
of a leaf replacing a NIL node. After that we will color the node red. Let the node added is 𝑣 . We define the attribute uncle
which is basically sibling of the parent. Now two cases can happen:

Case I: 𝑣 .uncle.𝑐𝑜𝑙𝑜𝑟 = Red: Then 𝑣 .parent.parent is black. In this case we can recolor 𝑣 .parent.parent to red and both
𝑣 .parent and 𝑣 .uncle to be black. This will preserve the number of black nodes in any simple path from root to
any leaf. Now the color of 𝑣 .parent.parent is red, and therefore we iterate the same process on 𝑣 .parent.parent.

𝑣 .𝑝 .𝑝

𝑣 .𝑝

𝑣 .𝑠 𝑣

𝑣 .𝑢

𝑣 .𝑝 .𝑝

𝑣 .𝑝

𝑣 .𝑠 𝑣

𝑣 .𝑢
Recolor

Case II: 𝑣 .uncle.color = Black: In this case we need two rotations. First we do a left rotation on 𝑣 .parent. After that we
do a right rotation on 𝑣 .parent.parent. After the rotations, we recolor the nodes. The color of 𝑣 .parent.parent

𝑣 .𝑝 .𝑝

𝑣 .𝑝

𝑣 .𝑠 𝑣

𝑣 .𝑠 𝑣 .𝑙

𝑣 .𝑢

𝑣 .𝑝 .𝑝

𝑣

𝑣 .𝑝

𝑣 .𝑠 𝑣 .𝑙

𝑣 .𝑟

𝑣 .𝑢

𝑣

𝑣 .𝑝

𝑣 .𝑠 𝑣 .𝑙

𝑣 .𝑝 .𝑝

𝑣 .𝑟 𝑣 .𝑢

𝑣

𝑣 .𝑝

𝑣 .𝑠 𝑣 .𝑙

𝑣 .𝑝 .𝑝

𝑣 .𝑟 𝑣 .𝑢

Left-Rotate(𝑣 .𝑝)

Right-Rotate(𝑣.𝑝.𝑝)

Recolor

and the color of 𝑣 .parent will be red. The color of 𝑣 will be recolored black. This will preserve the number of
black nodes in any simple path from root to any leaf. And this case now stabilizes the tree, and we can stop
the process.

8.3 Deletion Page 56

So analyzing the insertion process we can insert a node in a red-black tree and using the two cases we can recolor the
nodes the balance the tree.
Algorithm 37: RB-Insert(𝑇 , 𝑣)
1 𝑦 ←− NIL, 𝑥 ←− 𝑇 .root
2 while 𝑥 ≠ NIL do

3 𝑦 ←− 𝑥
4 if 𝑣 .key < 𝑥 .key then

5 𝑥 ←− 𝑥 .left
6 else

7 𝑥 ←− 𝑥 .right

8 𝑣 .parent←− 𝑦
9 if 𝑦 == NIL then

10 𝑇 .root←− 𝑣
11 else if 𝑣 .key < 𝑦.key then

12 𝑦.left←− 𝑣
13 else

14 𝑦.right←− 𝑣
15 𝑣 .left←− NIL, 𝑣 .right←− NIL, 𝑣 .color←− 𝑅𝐸𝐷
16 RB-Insert-Fixup(𝑇 , 𝑣)

Algorithm 38: RB-Insert-Fixup(𝑇 , 𝑣)
1 while 𝑣 .parent.color == 𝑅𝐸𝐷 do

2 if 𝑣 .parent.parent == 𝑁𝐼𝐿 then

3 𝑣 .parent.color←− 𝐵𝐿𝐴𝐶𝐾
4 Break
5 𝑣𝑢 ←− 𝑣 .parent.parent.right // Uncle
6 𝑣𝑝𝑝 ←− 𝑣 .parent.parent
7 if 𝑣𝑢.color == 𝑅𝐸𝐷 then

8 𝑣 .parent.color←− 𝐵𝐿𝐴𝐶𝐾 // Case I
9 𝑣𝑢.color←− 𝐵𝐿𝐴𝐶𝐾

10 𝑣𝑝𝑝 .color←− 𝑅𝐸𝐷
11 𝑣 ←− 𝑣𝑝𝑝
12 else

13 Left-Rotate(𝑇 , 𝑣 .parent) // Case II
14 Right-Rotate(𝑇 , 𝑣𝑝𝑝)
15 𝑣 .color←− 𝐵𝐿𝐴𝐶𝐾
16 𝑣𝑝𝑝 .color←− 𝑅𝐸𝐷
17 Break

Since the Case I can happen at most 𝑂 (log𝑛) times as each use of Case I increase the height by 2, the while loop
can run at most 𝑂 (log𝑛) times. Therefore, insertion of a node in a red-black tree takes 𝑂 (log𝑛) time.

8.3 Deletion

Like insertion, deletion of a node involves recoloring and rotations to maintain the properties of a red-black tree. Here
we will use a notion of double-black color. In the deletion we will use something called in-order traversal of the binary
tree and use successor and predecessor of a node in the traversal.

Definition 8.3.1: In-Order Traversal

In-Order Traversal of a binary tree is a traversal where:

• Recursively traverse the current node left subtree.

• Visit the current node.

• Recursively traverse the current node right subtree.

The in-order successor (predecessor) of a node is the next (previous) node in the in-order traversal of the tree.

Observation 8.1. For any node 𝑥 the in-order successor of 𝑥 is the leftmost node in the right subtree of 𝑥 . Similarly, the

in-order predecessor of 𝑥 is the rightmost node in the left subtree of 𝑥 .

To delete a node 𝑥 we will replace its key by the key of its in-order successor or predecessor (say 𝑦) and then delete
𝑦 i.e. after replacing the key of 𝑥 by the key of 𝑦, it will still have the color of 𝑥 .color. We replace with in-order successor
unless 𝑥 has no right child. In that case we replace with in-order predecessor. If 𝑥 has no children then we have 𝑦 = 𝑥 .

Note:-

𝑦 is either a non-NIL leaf or has exactly one child.

1. 𝑦 has a child then child must be colored red since otherwise the NIL child of 𝑦 and any NIL node in the subtree
rooted at child of 𝑦 will have different black-height. Therefore, 𝑦 must be colored black. Hence, we replace 𝑦 by its
child and color it black.

2. 𝑦 is a non-NIL leaf and its colored red. Then we can simply remove 𝑦 from the tree.

Page 57 Chapter 8 Red Black Tree Data Structure

So the only case remained to analyze is when 𝑦 is a non-NIL leaf and colored black. Now the situation is complicated
since removing 𝑦 would create black-height imbalance in the tree.

Observation 8.2. If 𝑦.color is black then 𝑦 must have a sibling since otherwise sibling of 𝑦 is NIL. Then that NIL node and

any NIL node in the subtree rooted at 𝑦 will have different black-height.

So we replace 𝑦 with a NIL node and color it double-black which will be counted has 2 black nodes to maintain the
black-height. Now we will resolve the double-black color by rotation, recoloring or pushing up the double-black color.
We will use the following pointers

• 𝑦.sibling to denote the sibling of 𝑦.

• 𝑦.left-nephew and 𝑦.right-nephew to denote the left and right child of 𝑦.sibling.

We will use the following cases to resolve the double-black color:

Case I: 𝑦.sibling,𝑦.parent,𝑦.left-nephew,𝑦.right-nephew are all Black. In this case we canmake𝑦.parent the double black
instead of 𝑦 and recolor the 𝑦 has black node and sibling of 𝑦 red color.

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

Recolor

Case II: 𝑦.sibling,𝑦.left-nephew,𝑦.right-nephew are Black & 𝑦.parent is Red. Here we recolor 𝑦.parent to black and
𝑦.sibling to red. This will preserve the number of black nodes in any path from root to any leaf. So we stop.

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

Recolor

Case III: 𝑦.sibling is Black and 𝑦.right-nephew is Red. Then we do a Left-Rotate on 𝑦.parent. Then we recolor 𝑦.sibling

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

𝑦.𝑠

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑟𝑛

𝑦.𝑠

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑟𝑛
Left-Rotate(𝑦.𝑝) Recolor

Same color

Color same as 𝑦.parent.color

to the same color as 𝑦.parent. And we recolor 𝑦.parent to black, 𝑦.right-nephew to red and 𝑦 to black. And now
we stop.

8.3 Deletion Page 58

Case IV: 𝑦.sibling,𝑦.right-nephew are Black & 𝑦.left-nephew is Red. Therefore, both the children of 𝑦.left-nephew have
color black. Here we first do a Right-Rotate on 𝑦.sibling. Then we recolor 𝑦.left-nephew to black and 𝑦.sibling

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛

𝑦.𝑙𝑛.𝑙 𝑦.𝑙𝑛.𝑟

𝑦.𝑟𝑛

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑙𝑛.𝑙 𝑦.𝑠

𝑦.𝑙𝑛.𝑟 𝑦.𝑟𝑛

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑙𝑛.𝑙 𝑦.𝑠

𝑦.𝑙𝑛.𝑟 𝑦.𝑟𝑛

Right-Rotate(𝑦.𝑠) Recolor

Same color

to red. Now we have exactly the same situation as in Case III with respect to node 𝑦 after recoloring. So we
follow the steps of Case III.

Case V: 𝑦.sibling = Red. In this case 𝑦.left-nephew and 𝑦.right-nephew must be black. Since 𝑦.sibling is Red, 𝑦.parent is
Black. Then we do a Left-Rotate on 𝑦.parent. Then we switch the colors of 𝑦.parent and 𝑦.sibling i.e. we color

𝑦.𝑝

𝑦 𝑦.𝑠

𝑦.𝑙𝑛 𝑦.𝑟𝑛

𝑦.𝑠

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑟𝑛

𝑦.𝑠

𝑦.𝑝

𝑦 𝑦.𝑙𝑛

𝑦.𝑟𝑛
Left-Rotate(𝑦.𝑝) Recolor

𝑦.parent to red and 𝑦.sibling to black. Now we have the sibling of 𝑦 has color black. So we are now in one of
the Case I-IV. So we can follow the suitable case to resolve.

This completes the description of the deletion process in a red-black tree. Now notice every time we are pushing the
double-black color up the tree, or we are stopping. Hence, it only takes 𝑂 (log𝑛) time to resolve the double-black color.
So the deletion process in a red-black tree takes 𝑂 (log𝑛) time.

Chapter 9
Maximum Flow

9.1 Flow

Suppose we are given a directed graph𝐺 = (𝑉 ,𝐸) with a source vertex 𝑠 and a target vertex 𝑡 . And additionally for every
edge 𝑒 ∈ 𝐸 we are given a number 𝑐𝑒 ∈ Z0 which is called the capacity of the edge.

Definition 9.1.1: Flow

An 𝑠 − 𝑡 flow is a function 𝑓 : 𝐸 → R0 which satisfies the following:

1 ∀ 𝑒 ∈ 𝐸, 𝑓 (𝑒) ≤ 𝑐𝑒

2 ∀ 𝑣 ∈ 𝑉 \ {𝑠 , 𝑡}, ∑
𝑒∈in(𝑣)

𝑓 (𝑒) = ∑
𝑒∈out(𝑣)

𝑓 (𝑒)

Also the value of a flow 𝑓 is denoted by |𝑓 | B ∑
𝑒∈out(𝑠)

𝑓 (𝑒).

Before proceeding into the setup and the problem first we will assume some things

Assumption. • in(𝑠) = ∅ i.e. there is no edge into 𝑠 .

• out(𝑡) = ∅ i.e. there is no edge out of 𝑡 .

• There are no parallel edges

Lemma 9.1.1
For any flow 𝑓 , |𝑓 | = ∑

𝑒∈in(𝑡)
𝑓 (𝑒)

Proof: We have for every edge 𝑒 ∈ 𝐸, ∃ 𝑣 ∈ 𝑉 such that 𝑒 ∈ in(𝑣) and ∃ 𝑢 ∈ 𝑉 such that 𝑒 ∈ out(𝑢). Hence, we get

∑︁
𝑒∈𝐸

𝑓 (𝑒) =
∑︁
𝑣∈𝑉

∑︁
𝑒∈in(𝑣)

𝑓 (𝑒) =
∑︁
𝑣∈𝑉

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒) =⇒
∑︁
𝑣∈𝑉


∑︁

𝑒∈in(𝑣)
𝑓 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒)
 = 0

Now we know ∀ 𝑣 ∈ 𝑉 \ {𝑠 , 𝑡}. ∑
𝑒∈in(𝑣)

𝑓 (𝑒) = ∑
𝑒∈out(𝑣)

𝑓 (𝑒). Therefore, we get

∑︁
𝑣∈𝑉


∑︁

𝑒∈in(𝑣)
𝑓 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒)
 = 0 =⇒

∑︁
𝑣∈{𝑠 ,𝑡 }


∑︁

𝑒∈in(𝑣)
𝑓 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒)
 = 0 =⇒

∑︁
𝑒∈out(𝑠)

𝑓 (𝑒) −
∑︁

𝑒∈in(𝑡)
𝑓 (𝑒)

Hence, we have |𝑓 | = ∑
𝑒∈in(𝑡)

𝑓 (𝑒). ■

9.2 Ford-Fulkerson Algorithm Page 60

Max Flow
Input: A directed graph𝐺 = (𝑉 ,𝐸) with source vertex 𝑠 and target vertex 𝑡 and for all edge 𝑒 ∈ 𝐸 capacity

of the edge 𝑐𝑒 ∈ Z0
Question: Given such a graph and its capacities find an 𝑠 − 𝑡 flow which has the maximum value

Example 9.1.1

Consider the following directed graph with capacities: 𝑉 = {𝑠 , 𝑡 ,𝑢, 𝑣}, 𝑐𝑠 ,𝑢 = 2, 𝑐𝑠 ,𝑣 = 𝑐𝑢,𝑡 = 𝑐𝑣,𝑡 = 𝑐𝑢,𝑣 = 1. Firstly
the following function: 𝑓 ′ : 𝑓 ′ (𝑠 ,𝑢) = 2 = 𝑓 (𝑢, 𝑡). It is not a flow since 𝑓 (𝑢, 𝑡) = 2 > 1 = 𝑐𝑢,𝑡 . Now we define three
different flow functions:

𝑠

𝑢

𝑣

𝑡

2 1

1

1 1

1

1

1

1 1

1 1

2 1
1

1

• 𝑓 : 𝑓 (𝑠 ,𝑢) = 𝑓 (𝑢, 𝑣) = 𝑓 (𝑣 , 𝑡) = 1 and otherwise
0. Therefore, |𝑓 | = 1

• 𝑔 : 𝑔(𝑠 ,𝑢) = 𝑔(𝑢, 𝑡) = 1, 𝑔(𝑠 , 𝑣) = 𝑔(𝑣 , 𝑡) = 1 and
otherwise 0. Therefore, |𝑔| = 2

• ℎ : ℎ(𝑠 ,𝑢) = 2, ℎ(𝑢, 𝑡) = ℎ(𝑢, 𝑣) = ℎ(𝑣 , 𝑡) = 1 and
otherwise 0. Therefore, |ℎ | = 2

Notice here 𝑔 and ℎ has the maximum flow value
since

∑
𝑒∈in(𝑡)

𝑐𝑒 = 2

9.2 Ford-Fulkerson Algorithm

Definition 9.2.1: Residual Graph

Given a directed graph𝐺 = (𝑉 ,𝐸) and capacities𝐶𝑒 for all 𝑒 ∈ 𝐸 and an 𝑠 − 𝑡 flow 𝑓 the residual graph𝐺 𝑓 = (𝑉 ,𝐸𝑓)
has the edges with the following properties:

1 If (𝑢, 𝑣) ∈ 𝐸 and 𝑓 (𝑢, 𝑣) > 0 then (𝑣 ,𝑢) ∈ 𝐸𝑓 and 𝑐 𝑓 (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣). Such an edge is called a backward edge.

2 If (𝑢, 𝑣) ∈ 𝐸 and 𝑓 (𝑢, 𝑣) < 𝑐𝑢,𝑣 then (𝑢, 𝑣) ∈ 𝐸𝑓 and 𝑐 𝑓 (𝑢, 𝑣) = 𝑐𝑢,𝑣 − 𝑓 (𝑢, 𝑣). It is called forward edge.

Algorithm 39: Ford-Fulkerson
Input: Directed graph 𝐺 = (𝑉 ,𝐸), source 𝑠 , target 𝑡 and edge capacities 𝐶𝑒 for all 𝑒 ∈ 𝐸
Output: Flow 𝑓 with maximum value

1 begin

2 for 𝑒 ∈ 𝐸 do

3 𝑓 (𝑒) = 0
4 while ∃ 𝑠 ⇝ 𝑡 path 𝑃 in 𝐺 𝑓 do

5 𝛿 ←− min
𝑒∈𝑃
{𝑐 𝑓 (𝑒)} for 𝑒 = (𝑢, 𝑣) ∈ 𝑃 do

6 if 𝑒 is Forward Edge then

7 𝑓 (𝑢, 𝑣) ←− 𝑓 (𝑢, 𝑣) + 𝛿
8 else

9 𝑓 (𝑣 ,𝑢) ←− 𝑓 (𝑣 ,𝑢) − 𝛿

We call one iteration of the While loop at line 4 Flow Augmentation.

Page 61 Chapter 9 Maximum Flow

Lemma 9.2.1
At any iteration the 𝑓 ′ obtained after the flow augmentation of the flow 𝑓 is a valid flow

Proof: At any iteration let 𝑃 be the path from 𝑠 ⇝ 𝑡 in the residue graph 𝐺 𝑓 and 𝛿 = min
𝑒∈𝑃

𝑐 𝑓 (𝑒). Let 𝑓 ′ be the new
function such that for each (𝑢, 𝑣) ∈ 𝑃 if (𝑢, 𝑣) is forward edge in 𝐺 𝑓 then 𝑓 ′ (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣) + 𝛿 and if (𝑢, 𝑣) is backward
edge in 𝐺 𝑓 then 𝑓 ′ (𝑣 ,𝑢) = 𝑓 (𝑣 ,𝑢) − 𝛿 and for other edges 𝑒 ∈ 𝐸 \ 𝑃 , 𝑓 ′ (𝑒) = 𝑓 (𝑒).

Now since 𝛿 = min
𝑒∈𝑃

𝑐 𝑓 (𝑒), 𝑐 𝑓 (𝑒) ≥ 𝛿 for all 𝑒 ∈ 𝑃 . Hence, if (𝑢, 𝑣) is backward edge then (𝑣 ,𝑢) ∈ 𝐸 and 𝑐 𝑓 (𝑢, 𝑣) =
𝑓 (𝑢, 𝑣). Hence, 𝑓 ′ (𝑣 ,𝑢) = 𝑓 (𝑣 ,𝑢) − 𝛿 ≥ 0. Therefore, for all 𝑒 ∈ 𝐸, 𝑓 ′ (𝑒) ≥ 0.

Now first we will show 𝑓 ′ (𝑒) ≤ 𝑐𝑒 for all 𝑒 ∈ 𝐸. If (𝑢, 𝑣) ∈ 𝑃 is a forward edge then (𝑢, 𝑣) ∈ 𝐸 and 𝑐 𝑓 (𝑢, 𝑣) =
𝑐𝑢,𝑣 − 𝑓 (𝑢, 𝑣). Therefore, 𝑓 ′ (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣) + 𝛿 ≤ 𝑓 (𝑢, 𝑣) + 𝑐𝑢,𝑣 − 𝑓 (𝑢, 𝑣) = 𝑐𝑢,𝑣 . Now if (𝑢, 𝑣) ∈ 𝑃 is a backward edge
then (𝑣 ,𝑢) ∈ 𝐸 and 𝑐 𝑓 (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣). Therefore, 𝑓 ′ (𝑣 ,𝑢) = 𝑓 (𝑣 ,𝑢) − 𝛿 ≤ 𝑓 (𝑣 ,𝑢) ≤ 𝑐𝑣,𝑢 . For other edges 𝑒 ∈ 𝐸 \ 𝑃 ,
𝑓 ′ (𝑒) = 𝑓 (𝑒) ≤ 𝑐𝑒 . Therefore, 𝑓 ′ (𝑒) ≤ 𝑐𝑒 for all 𝑒 ∈ 𝐸

Nowwe will prove for all 𝑣 ∈ 𝑉 \ {𝑠 , 𝑡}, ∑
𝑒∈in(𝑣)

𝑓 ′ (𝑒) = ∑
𝑒∈out(𝑣)

𝑓 ′ (𝑒). If 𝑣 is not in the path 𝑃 in𝐺 𝑓 then, 𝑓 ′ (𝑒) = 𝑓 (𝑒)

for all edges 𝑒 ∈ in(𝑣) ∪ out(𝑣). Hence, the condition is satisfied for such vertices. Suppose 𝑣 is in the path 𝑃 . Then there
are two edges 𝑒1 (𝑣) and 𝑒2 in 𝑃 which are incident on 𝑣 . If both are forward edges or both are backward edges then one
of them is in in(𝑣) and other one is in out(𝑣). If 𝑒𝑖 is backward edge then we will denote it by 𝑒𝑖 too. NowWLOG suppose
𝑒1 ∈ in(𝑣) and 𝑒2 ∈ out(𝑣) we have∑︁

𝑒∈in(𝑣)
𝑓 ′ (𝑒) = 𝑓 (𝑒1) ± 𝛿 +

∑︁
𝑒∈in(𝑣)\{𝑒1 }

𝑓 (𝑒) = 𝑓 (𝑒2) ± 𝛿 +
∑︁

𝑒∈out(𝑣)\{𝑒2 }
𝑓 (𝑒) =

∑︁
𝑒∈out(𝑣)

𝑓 ′ (𝑒)

If one of 𝑒1, 𝑒2 is forward edge and other one is backward edge then either 𝑒1, 𝑒2 ∈ in(𝑣) (when 𝑒1 is forward and 𝑒2 is
backward) or 𝑒1, 𝑒2 ∈ out(𝑣) (when 𝑒1 is backward and 𝑒2 is forward). Now if 𝑒1, 𝑒2 ∈ in(𝑣), 𝑓 ′ (𝑒1) + 𝑓 ′ (𝑒2) = 𝑓 (𝑒1) + 𝛿 +
𝑓 (𝑒2) − 𝛿 = 𝑓 (𝑒1) + 𝑓 (𝑒2) and if 𝑒1, 𝑒2 ∈ out(𝑣) then 𝑓 ′ (𝑒1) + 𝑓 ′ (𝑒2) = 𝑓 (𝑒1) − 𝛿 + 𝑓 ′ (𝑒2) + 𝛿 = 𝑓 (𝑒1) + 𝑓 (𝑒2). Hence,∑︁

𝑒∈in(𝑣)
𝑓 ′ (𝑒) =

∑︁
𝑒∈in(𝑣)

𝑓 (𝑒) =
∑︁

𝑒∈out(𝑣)
𝑓 (𝑒) =

∑︁
𝑒∈out(𝑣)

𝑓 ′ (𝑒)

Hence, 𝑓 ′ is a valid flow. ■

Lemma 9.2.2
At any iteration given 𝐺 𝑓 if the flow, 𝑓 ′ obtained after flow augmentation of 𝑓 by 𝛿 then

|𝑓 ′ | = |𝑓 | + 𝛿

Proof: Since we augment flow along an 𝑠 ⇝ 𝑡 path, the first edge of the path is always in out (𝑠). Let the first edge is
𝑒 = (𝑠 ,𝑢). Now 𝑒 has to be a forward edge in the path because otherwise (𝑢, 𝑠) ∈ 𝐸 and then there is an incoming edge in
𝐺 which is not possible. Hence,

|𝑓 ′ | =
∑︁

𝑒∈out(𝑠)
𝑓 ′ (𝑒) =

∑︁
𝑒∈out(𝑠)\{𝑒 }

𝑓 (𝑒) + 𝑓 ′ (𝑒) =
∑︁

𝑒∈out(𝑠)\{𝑒 }
𝑓 (𝑒) + 𝑓 (𝑒) + 𝛿 =

∑︁
𝑒∈out(𝑠)

𝑓 (𝑒) + 𝛿 = |𝑓 | + 𝛿

Hence, we have the lemma. ■

Lemma 9.2.3
At every iteration of the Ford-Fulkerson Algorithm the flow values and the residual capacities of the residual graph
are non-negative integers.

Proof: Initial flow and the residual capacities are non-negative integers. Let till 𝑖𝑡ℎ iteration the flow values and the
residual capacities were non-negative integers. Let the flow after 𝑖𝑡ℎ iteration was 𝑓 . Hence, ∀ 𝑒 ∈ 𝐸, 𝑓 (𝑒) ∈ Z0. Therefore,
in the 𝐺 𝑓 for all 𝑒 ∈ 𝐸𝑓 , 𝑐 𝑓 (𝑒) ∈ Z0. Hence, 𝛿 ∈ Z0. Therefore, ∀ 𝑒 ∈ 𝐸, 𝑓 ′ (𝑒) ∈ Z0. And Therefore, for all 𝑒 ∈ 𝐸𝑓 ′ where

9.2 Ford-Fulkerson Algorithm Page 62

𝐺 𝑓 ′ is the residual graph of the flow 𝑓 ′, 𝑐 𝑓 ′ (𝑒) ∈ Z0. Hence, by mathematical induction the lemma follows. ■

At any iteration let 𝑃 be the path from 𝑠 ⇝ 𝑡 . Then for all 𝑒 ∈ 𝑃 , 𝑐 𝑓 (𝑒) > 0. Therefore, 𝛿 = min
𝑒∈𝑃

𝑐 𝑓 (𝑒) ≥ 1. Therefore,
the algorithm must stop in at most

∑
𝑒∈out(𝑠)

𝑐𝑒 since we can have the value of a flow to be at max the value of the sum of

capacities of edges in out (𝑠) and Therefore, we can increase the flow at max that many times.

Lemma 9.2.4
If 𝑓 is a max flow then there is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓 .

Proof: Suppose there is an 𝑠 ⇝ 𝑡 path 𝑃 in 𝐺 𝑓 . We will show that then 𝑓 is not a max flow following the algorithm.
Then ∀ 𝑒 ∈ 𝑃 , 𝑐 𝑓 (𝑒) > 0. Hence, 𝛿 = min

𝑒∈𝑃
𝑐 𝑓 (𝑒) ≥ 1. Now after the flow augmentation process of 𝑓 by 𝛿 we get a new

valid flow 𝑓 ′ by Lemma 9.2.1 and by Lemma 9.2.2 we have |𝑓 ′ | = |𝑓 | + 𝛿 > | |𝑓 |. Hence, 𝑓 is not a maximum flow. Hence,
contradiction. Therefore, there is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓 . ■

9.2.1 Max Flow Min Cut

Definition 9.2.2: Cut Set

For a graph𝐺 = (𝑉 ,𝐸) and a subset𝐴 ⊆ 𝑉 , the cut (𝐴,𝑉 \𝐴) is a bipartition of𝑉 where the edges 𝐸𝐴 of the graph
𝐺𝐴 = (𝐴,𝑉 \𝐴,𝐸𝐴) is the set 𝐸𝐴 = 𝐸 ∩ (𝐴 × (𝑉 \𝐴)).

Now if 𝑠 , 𝑡 are two vertices of 𝐺 then an 𝑠 − 𝑡 Cut (𝐴,𝑉 \𝐴) is a cut such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝑉 \𝐴.

Now we define for a cut (𝐴,𝑉 \𝐴) the Capacity of the Cut (𝐴,𝑉 \𝐴) = ∑
𝑒∈𝐸𝐴

𝑐𝑒 . For an 𝑠 − 𝑡 cut (𝐴,𝑉 \𝐴) we denote

the capacity of the cut by cap(𝐴). An 𝑠 − 𝑡 Min Cut is an 𝑠 − 𝑡 cut of minimum capacity. Then we have the following
relation between cut and flow.

Lemma 9.2.5
Given a graph 𝐺 = (𝑉 ,𝐸), 𝑠 , 𝑡 , 𝑐𝑒 ∈ Z0 for all 𝑒 ∈ 𝐸 for any flow 𝑓 and an 𝑠 − 𝑡 cut (𝐴,𝑉 \𝐴)

|𝑓 | ≤ cap(𝐴)

Proof: Given 𝑓 and the 𝑠 − 𝑡 cut (𝐴,𝑉 \𝐴) we have

|𝑓 | =
∑︁

𝑒∈out(𝑠)
𝑓 (𝑒)

=
∑︁
𝑣∈𝐴


∑︁

𝑒∈out(v)
𝑓 (𝑒) −

∑︁
𝑒∈in(𝑣)

𝑓 (𝑒)


=
∑︁

𝑒=(𝑢,𝑣) ,
𝑢∈𝐴,𝑣∉𝐴

𝑓 (𝑒) −
∑︁

𝑒=(𝑢,𝑣) ,
𝑢∉𝐴,𝑣∈𝐴

𝑓 (𝑒) [Edges for both endpoints in 𝐴 are canceled out]

=
∑︁

𝑒∈out(𝐴)
𝑓 (𝑒) −

∑︁
𝑒∈in(𝐴)

𝑓 (𝑒)

≤
∑︁

𝑒∈out(𝐴)
𝑓 (𝑒) ≤

∑︁
𝑒∈out(𝐴)

𝑐𝑒 = cap(𝐴)

Hence, we have the lemma. ■

Having this lemma we have for any flow 𝑓 and 𝑠 − 𝑡 cut (𝐴,𝑉 \𝐴) we have

|𝑓 | ≤ cap(𝐴) =⇒ max
𝑓
|𝑓 | ≤ min

𝑠−𝑡 cut (𝐴,𝑉 \𝐴)
cap(𝐴)

Page 63 Chapter 9 Maximum Flow

So we have the following theorem that the value of maximum flow is equal to the capacity of minimum cut.

Theorem 9.2.6 Max Flow Min Cut

Given a graph 𝐺 = (𝑉 ,𝐸), 𝑠 , 𝑡 , 𝑐𝑒 ∈ Z0 for all 𝑒 ∈ 𝐸. Then the following are equivalent:

(1) 𝑓 is a maximum flow.

(2) There is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓

(3) There exists an 𝑠 − 𝑡 cut of capacity |𝑓 |

Proof:

(1) =⇒ (2): This is by Lemma 9.2.4.

(2) =⇒ (3): We are given a flow 𝑓 such that there is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓 . We will construct an 𝑠 − 𝑡 cut which has the
capacity |𝑓 |. Now take 𝐴 to be all the vertices reachable from 𝑠 in 𝐺 𝑓 . This is a valid 𝑠 − 𝑡 cut since 𝑠 ∈ 𝐴
and as there is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓 , 𝑡 ∉ 𝐴. Now

|𝑓 | =
∑︁

𝑒∈out(𝐴)
𝑓 (𝑒) −

∑︁
𝑒∈in(𝐴)

𝑓 (𝑒)

Now ∀ 𝑒 = (𝑢, 𝑣) ∈ 𝐸 where 𝑢 ∈ 𝐴 and 𝑣 ∉ 𝐴 we have 𝑐𝑢,𝑣 = 𝑓 (𝑢, 𝑣) =⇒ 𝑐𝑢,𝑣 − 𝑓 (𝑢, 𝑣) = 0 since otherwise
𝑐𝑢,𝑣 − 𝑓 (𝑢, 𝑣) ≠ 0 =⇒ 𝑐𝑢,𝑣 > 𝑓 (𝑢, 𝑣) =⇒ (𝑢, 𝑣) ∈ 𝐸𝑓 and Therefore, 𝑣 is reachable from 𝑠 but 𝑣 ∉ 𝐴,
contradiction. Therefore, (𝑢, 𝑣) is a backward edge. Also, ∀ 𝑒 = (𝑢, 𝑣) ∈ 𝐸 where 𝑢 ∉ 𝐴 and 𝑣 ∈ 𝐴 we have
𝑓 (𝑢, 𝑣) = 0 since otherwise 𝑓 (𝑢, 𝑣) > 0 =⇒ (𝑣 ,𝑢) ∈ 𝐸𝑓 and Therefore, 𝑢 is reachable from 𝑠 but 𝑢 ∉ 𝐴,
contradiction. Hence, we have

|𝑓 | =
∑︁

𝑒∈out(𝐴)
𝑓 (𝑒) −

∑︁
𝑒∈in(𝐴)

𝑓 (𝑒) =
∑︁

𝑒∈out(𝐴)
𝑐𝑒 = cap(𝐴)

(3) =⇒ (1): Now by Lemma 9.2.5 we have for any flow 𝑓 and 𝑠 − 𝑡 cut

|𝑓 | ≤ cap(𝐴) =⇒ max
𝑓
|𝑓 | ≤ min

𝑠−𝑡 cut (𝐴,𝑉 \𝐴)
cap(𝐴)

Now given 𝑓 there exists an 𝑠 − 𝑡 cut of capacity |𝑓 |. Hence, 𝑓 is a max flow.

■

We will get another proof of the Max Flow Min Cut Theorem in subsection 14.4.4 using strong duality of linear program-
ming.

Hence, at the end of the Ford-Fulkerson Algorithm let the flow returned by the algorithm is 𝑓 . The algorithm
terminates when there is no 𝑠 ⇝ 𝑡 path in𝐺 𝑓 . Hence, by Max Flow Min Cut Theorem we have 𝑓 is a maximum flow. This
completes the analysis of the Ford-Fulkerson Algorithm.

Since the capacities of the edges can be very large we want an algorithm that returns the maximum flow with
running time poly(𝑛,𝑚, log 𝑐𝑒) where 𝑛 is the number of vertices and𝑚 is the number of edges and log 𝑐𝑒 basically means
number of bits at most needed to represent the capacities.

But Ford-Fulkerson algorithm takes does not run in poly(𝑛,𝑚, log 𝑐𝑒) instead poly(𝑛,𝑚, 𝑐𝑒) as the while loop in the
algorithm takes poly(𝑐𝑒) many iterations. For example in the following graph: it takes around 100 steps

𝑠

𝑢

𝑣

𝑡

100 100

1

100 100

and in general Ford-Fulkerson takes 𝑂 (|𝑓max |) time. For this reason we will now discuss a modification of the Ford-
Fulkerson Algorithm which takes poly(𝑛,𝑚, log 𝑐𝑒) time, Edmonds-Karp Algorithm.

9.2 Ford-Fulkerson Algorithm Page 64

9.2.2 Edmonds-Karp Algorithm

To get a poly(𝑛,𝑚, log 𝑐𝑒) time algorithm we will always pick the shortest 𝑠 ⇝ 𝑡 path in the residual graph. This algorithm
is known as the Edmonds-Karp Algorithm

Suppose 𝑓𝑖 be the total flow after 𝑖𝑡ℎ iteration. And 𝐺 𝑓𝑖 be the residual graph with respect 𝑓𝑖 . Then 𝑓0 (𝑒) = 0 for all
𝑒 ∈ 𝐸 and 𝐺 𝑓0 = 𝐺 . Also suppose dist𝑖 (𝑣) = Shortest 𝑠 ⇝ 𝑣 path distance in the residual graph 𝐺 𝑓𝑖 . Hence, dist𝑖 (𝑠) = 0 for
all 𝑖 and dist𝑖 (𝑡) = ∞ at the end of the algorithm.

Note:-

In 𝑖𝑡ℎ iteration of the Ford-Fulkerson Algorithm or Edmonds-Karp Algorithm if 𝑃 is the 𝑠 ⇝ 𝑡 path in the residual graph
𝐺 𝑓𝑖 where 𝑒 = (𝑢, 𝑣) ∈ 𝑃 is such that 𝑐 𝑓𝑖 (𝑢, 𝑣) = 𝛿 = min

𝑒∈𝑃
𝑐 𝑓𝑖 (𝑒) then the edge (𝑢, 𝑣) is not present in the next residual

graph 𝐺 𝑓𝑖+1 . Thus, at least one edge disappears in each iteration of Ford-Fulkerson or Edmonds-Karp Algorithm.

Nowwewill prove following two lemmaswhichwill help us to prove that the Edmond-Karp algorithm takes𝑂 (𝑚𝑛)
iterations.

Lemma 9.2.7
At any iteration 𝑖 , ∀ 𝑣 ∈ 𝑉 , dist𝑖 (𝑣) ≤ dist𝑖+1 (𝑣)

Proof: Suppose this is not true. Then let 𝑖 be the first iteration in which there exists a vertex 𝑣 ∈ 𝑉 such that dist𝑖 (𝑣) >
dist𝑖+1 (𝑣). We pick such 𝑣 which minimizes dist𝑖+1 (𝑣). Consider the shortest path 𝑃 from 𝑠 ⇝ 𝑣 in 𝐺 𝑓𝑖+1 . Hence, length of
𝑃 , |𝑃 | = dist𝑖+1 (𝑣). Let (𝑢, 𝑣) be the last edge of 𝑃 .

𝑠 𝑢 𝑣𝑃 :

Then
dist𝑖+1 (𝑣) = dist𝑖+1 (𝑢) + 1 ≥ dist𝑖 (𝑢) + 1

Here the last inequality follows because 𝑣 is the vertex which has the minimum dist𝑖+1 (𝑣) among all the vertices 𝑤 ∈ 𝑉
which follows dist𝑖 (𝑤) > dist𝑖+1 (𝑤). Now we will analyze case wise.

• Case 1: (𝑢, 𝑣) ∈ 𝐸𝑓𝑖 . Then
dist𝑖 (𝑣) ≤ dist𝑖 (𝑢) + 1 ≤ dist𝑖+1 (𝑣)

But this is not possible since dist𝑖 (𝑣) > dist𝑖+1 (𝑣).

• Case 2: (𝑢, 𝑣) ∉ 𝐸𝑓𝑖 . Then (𝑣 ,𝑢) ∈ 𝐸𝑓𝑖 . Since (𝑢, 𝑣) ∈ 𝐸𝑓𝑖+1 then we must have sent flow along (𝑣 ,𝑢). Since we take
the shortest 𝑠 ⇝ 𝑡 path in 𝐺 𝑓𝑖 in the algorithm we have dist𝑖 (𝑢) = dist𝑖 (𝑣) + 1. But then

dist𝑖 (𝑢) ≤ dist𝑖+1 (𝑣) − 1 =⇒ dist𝑖+1 (𝑣) ≥ dist𝑖 (𝑣) + 2

But this is not possible.

Hence, contradiction ETherefore, for all iterations 𝑖 , for all vertices 𝑣 ∈ 𝑉 , dist𝑖 (𝑣) ≤ dist𝑖+1 (𝑣). ■

Lemma 9.2.8
For any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 the number of iterations where either (𝑢, 𝑣) appears or (𝑣 ,𝑢) appears is at most 𝑂 (𝑛)
i.e. ��{𝑖 : (𝑢, 𝑣) ∉ 𝐺 𝑓𝑖 , (𝑢, 𝑣) ∈ 𝐺 𝑓𝑖+1}�� + ��{𝑖 : (𝑣 ,𝑢) ∉ 𝐺 𝑓𝑖 , (𝑣 ,𝑢) ∈ 𝐺 𝑓𝑖+1}�� = 𝑂 (𝑛)

Proof: Following the proof of Lemma 9.2.7 in the second case we showed if (𝑢, 𝑣) ∉ 𝐺 𝑓𝑖 but (𝑢, 𝑣) ∈ 𝐺 𝑓𝑖+1 then
dist𝑖+1 (𝑣) ≥ dist𝑖 (𝑣) + 2. Hence, the distance increases by at least 2. Now this can happen at most 𝑂 (𝑛) many times
since ∀ 𝑖 , dist𝑖 (𝑣) ≤ 𝑛 − 1. Hence, the number of iterations where either (𝑢, 𝑣) appears or (𝑣 ,𝑢) appears is at most𝑂 (𝑛). ■

With this this lemma we will prove that the Edmonds-Karp Algorithm takes 𝑂 (𝑚𝑛) iterations.

Page 65 Chapter 9 Maximum Flow

Theorem 9.2.9
Edmonds-Karp Algorithm terminates in 𝑂 (𝑚𝑛) many iterations.

Proof: For 𝑘 iterations at least 𝑘 edges must disappear. Since each edge can reappear𝑂 (𝑛) times by Lemma 9.2.8, it can
disappear at most 𝑂 (𝑛) many times. In each iteration at least one edge disappears. Now after 𝑂 (𝑚𝑛) iterations number
of disappearances is at most 𝑂 (𝑚𝑛). But after 𝑂 (𝑚𝑛) many disappearances there are no edges remaining to disappear or
reappear and Therefore, there is no 𝑠 ⇝ 𝑡 path. Hence, the algorithm terminates. Therefore, the Algorithm terminates in
𝑂 (𝑚𝑛) iterations. ■

Hence, Edmonds-Karp Algorithm takes 𝑂 (𝑚2𝑛)poly(log 𝑐𝑒) = 𝑂
(
𝑚2𝑛 log𝑂 (1) (𝑐𝑒)

)
time since it takes 𝑂 (𝑚𝑛) iter-

ations and in each iteration it finds the shortest 𝑠 ⇝ 𝑡 path in𝐺 𝑓𝑖 in𝑂 (𝑚) time and in each iteration it does addition and
subtraction and finds minimum of the capacities which takes polynomial of the bits needed to represent them time.

9.3 Preflow-Push/Push-Relabel Algorithm

In this algorithm we will maintain something called “Preflow” which is not a valid flow. Unlike Ford-Fulkerson, Edmonds-
Karp it does not maintain a 𝑠 ⇝ 𝑡 path in the residual graph and the algorithm stops when the preflow is actually a valid
flow.

Definition 9.3.1: Preflow

Given a graph 𝐺 = (𝑉 ,𝐸) and the edge capacities 𝑐𝑒 , a function 𝑓 : 𝐸 → R0 is a preflow if it satisfies:

1 ∀ 𝑒 ∈ 𝐸, 𝑓 (𝑒) ≤ 𝑐𝑒 .

2 ∀ 𝑣 ∈ 𝑉 \ {𝑠}, ∑
𝑒∈in(𝑣)

𝑓 (𝑒) ≥ ∑
𝑒∈out(𝑣)

𝑓 (𝑒)

Observation 9.1. Unlike the definition of Flow here in the second criteria we need

∑
𝑒∈in(𝑣)

𝑓 (𝑒) ≥ ∑
𝑒∈out(𝑣)

𝑓 (𝑒) instead of∑
𝑒∈in(𝑣)

𝑓 (𝑒) = ∑
𝑒∈out(𝑣)

𝑓 (𝑒).

Now define for all 𝑣 ∈ 𝑉 and for all preflow 𝑓 , excess𝑓 (𝑣) =
∑

𝑒∈in(𝑣)
𝑓 (𝑒) − ∑

𝑒∈out(𝑣)
𝑓 (𝑒). If 𝑓 is a preflow then

excess𝑓 (𝑠) ≤ 0 and ∀ 𝑣 ∈ 𝑉 \ {𝑠}, excess𝑓 (𝑣) ≥ 0

Lemma 9.3.1
For all preflow 𝑓 ∑︁

𝑣∈𝑉
excess𝑓 (𝑣) = 0

Proof: We have

∑︁
𝑣∈𝑉

excess𝑓 (𝑣) =
∑︁
𝑣∈𝑉


∑︁

𝑒∈in(𝑣)
𝑓 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒)
 =

∑︁
𝑣∈𝑉

∑︁
𝑒∈in(𝑣)

𝑓 (𝑒) −
∑︁
𝑣∈𝑉

∑︁
𝑒∈out(𝑣)

𝑓 (𝑒) =
∑︁
𝑒∈𝐸

𝑓 (𝑒) −
∑︁
𝑒∈𝐸

𝑓 (𝑒) = 0

Hence, we have the lemma. ■

Now for each 𝑣 ∈ 𝑉 we assign a label 𝑙 (𝑣) ∈ Z0. The algorithm then sends flow from 𝑢 → 𝑣 if 𝑙 (𝑣) = 𝑙 (𝑢) − 1.

𝑢

𝑣

𝑙 (𝑢)

𝑙 (𝑣) = 𝑙 (𝑢) − 1

9.3 Preflow-Push/Push-Relabel Algorithm Page 66

Algorithm 40: Preflow-Push
Input: Directed graph 𝐺 = (𝑉 ,𝐸), source 𝑠 , target 𝑡 and edge capacities 𝐶𝑒 for all 𝑒 ∈ 𝐸
Output: Flow 𝑓 with maximum value

1 begin

2 Initially ∀ 𝑒 = (𝑠 ,𝑢) ∈ 𝐸, 𝑓 (𝑒) = 𝑐𝑒 and 𝑓 (𝑒) = 0 for all other edges.
3 𝑙 (𝑠) ←− 𝑛
4 for 𝑣 ∈ 𝑉 \ {𝑠} do
5 𝑙 (𝑣) ←− 0
6 while ∃ 𝑣 ≠ 𝑡 , excess𝑓 (𝑣) > 0 do
7 if ∃ 𝑢, such that (𝑣 ,𝑢) ∈ 𝐸𝑓 and 𝑙 (𝑢) = 𝑙 (𝑣) − 1 then
8 𝛿 ←− min

{
excess𝑓 (𝑣), 𝑐 𝑓 (𝑣 ,𝑢)

}
9 if (𝑣 ,𝑢) is Forward Edge then
10 𝑓 (𝑣 ,𝑢) ←− 𝑓 (𝑣 ,𝑢) + 𝛿
11 else

12 𝑓 (𝑢, 𝑣) ←− 𝑓 (𝑢, 𝑣) − 𝛿

13 else

14 𝑙 (𝑣) ←− 𝑙 (𝑣) + 1 //Relabeling

In the algorithm in line 8 if 𝛿 = 𝑐 𝑓 (𝑣 ,𝑢) then we call it saturating push and if 𝛿 = excess𝑓 (𝑣) then we call it non-saturating
push.

Now we will show an example of how the algorithm on a graph. We will start the algorithm with the following
graph:

𝑠 𝑣 𝑡
6 4

3𝑙 : 0 0

Below we will show change of the residual graph and preflow in each iteration of the While loop:

• Step 1:

𝑠 𝑣 𝑡
6 4

3𝑙 : �01 0
−6excess𝑓 : 6 0

6
𝑓 :

Since excess𝑓 (𝑣) = 6 > 0. So in first iteration 𝑣 is taken.
Since there is no edge (𝑣 ,𝑢) with 𝑙 (𝑢) = 𝑙 (𝑣) − 1, label of 𝑣
got increased

• Step 2:

𝑠 𝑣 𝑡
6 4

3𝑙 : 1 0
−6excess𝑓 :

�62 �04

6
𝑓 : 4

Since excess𝑓 (𝑣) = 2 > 0, in second iteration again 𝑣 is
selected. There is an edge (𝑣 , 𝑡) with 𝑙 (𝑡) = 0 = 𝑙 (𝑣) − 1 =

1 − 1. Now 𝛿 = 𝑐 𝑓 (𝑣 , 𝑡) = 4. Hence, saturating push. The
preflow gets updated, 𝑓 (𝑠 , 𝑣) = 6, 𝑓 (𝑣 , 𝑡) = 4.

• Step 5:

𝑠 𝑣 𝑡
6 4

3𝑙 : �14 0
−6excess𝑓 : 2 4

6
𝑓 : 4

Since excess𝑓 𝑓 (𝑣) = 2 > 0, in next 3 iterations again 𝑣 is
selected. Since there is no edge (𝑣 ,𝑢) with 𝑙 (𝑢) = 𝑙 (𝑣) − 1,
label of 𝑣 gets increased every time. Which becomes 4 after
3 iterations.

Page 67 Chapter 9 Maximum Flow

• Step 6:

𝑠 𝑣 𝑡
2

4

4

3𝑙 : 4 0
−6excess𝑓 :

�20 4

4
𝑓 : 4 Since excess𝑓 (𝑣) = 2 > 0, in this iteration again 𝑣 is selected.

There is an edge (𝑣 , 𝑠) with 𝑙 (𝑠) = 3 = 𝑙 (𝑣) − 1 = 4 − 1. Now
𝛿 = excess𝑓 (𝑣 , 𝑠) = 2. Hence, it’s non-saturating push. So the
preflow gets updated 𝑓 (𝑠 , 𝑣) = 6 − 2 = 4, 𝑓 (𝑣 , 𝑡) = 4. Now
it’s a valid flow. Now there is no vertex with postive excess.
Hence, the algorithm stops.

Observation 9.2. Labels are monotonically non-decreasing.

Observation 9.3. For every iteration 𝑓 is always a preflow. The proof is similar to Lemma 9.2.1 but use inequalities.

Observation 9.4.

∑
𝑣∈𝑉

excess𝑓 (𝑣) = 0 and ∀ 𝑣 ∈ 𝑉 \ {𝑠}, excess𝑓 (𝑣) ≥ 0. Hence, excess𝑓 (𝑠) ≤ 0 =⇒ 𝑙 (𝑠) is unchanged.

Now suppose 𝑓 𝑖 denote the preflow after the 𝑖𝑡ℎ iteration of the algorithm. Then define

𝑓 0 (𝑒) =
{
𝑐𝑒 when 𝑒 = (𝑠 ,𝑢)
0 otherwise

Now we will show the correctness of the algorithm.

Lemma 9.3.2
∀ 𝑣 ∈ 𝑉 , ∀ 𝑖 , excess𝑓 𝑖 (𝑣) > 0 =⇒ ∃ 𝑣 ⇝ 𝑠 in 𝐺 𝑓 𝑖

Proof: First we fix 𝑣 and 𝑖 such that excess𝑓 𝑖 > 0. Let 𝑋 be the set of vertices reachable from 𝑣 in 𝐺 𝑓 𝑖 . Now∑︁
𝑢∈𝑋

excess𝑓 𝑖 (𝑢) =
∑︁
𝑢∈𝑋


∑︁

𝑒∈in(𝑣)
𝑓 𝑖 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 𝑖 (𝑒)
 =

∑︁
𝑒∈in(𝑋)

𝑓 𝑖 (𝑒) −
∑︁

𝑒∈out(𝑋)
𝑓 𝑖 (𝑒)

Now if
∑

𝑒∈in(𝑋)
𝑓 𝑖 (𝑒) > 0 then ∃ 𝑒 = (𝑢′,𝑢) ∈ 𝐸 such that 𝑢′ ∉ 𝑋 and 𝑢 ∈ 𝑋 and 𝑓 𝑖 (𝑒) > 0. Then the backward edge

(𝑢,𝑢′) ∈ 𝐸𝑓 𝑖 . Then 𝑢′ is reachable from 𝑣 in 𝐺 𝑓 𝑖 . But 𝑢′ ∉ 𝑋 . Contradiction ETherefore,
∑

𝑒∈in(𝑋)
𝑓 𝑖 (𝑒) = 0. Hence,∑︁

𝑢∈𝑋
excess𝑓 𝑖 (𝑢) =

��
����

∑︁
𝑒∈in(𝑋)

𝑓 𝑖 (𝑒) −
∑︁

𝑒∈out(𝑋)
𝑓 𝑖 (𝑒) ≤ 0

But from Observation 9.4 we have ∀ 𝑤 ∈ 𝑉 \ {𝑠}, excess𝑓 𝑖 (𝑤) ≥ 0. But at the same time
∑
𝑢∈𝑋

excess𝑓 𝑖 (𝑢) ≤ 0 and

excess𝑓 𝑖 (𝑣) > 0. Hence, ∃ a vertex 𝑢 ∈ 𝑋 such that excess𝑓 𝑖 (𝑢) < 0. But we know only vertex with negative excess is 𝑠 .
Therefore, 𝑠 ∈ 𝑋 . Hence, 𝑠 is reachable from 𝑣 . ■

Lemma 9.3.3
∀ 𝑖 , if (𝑢, 𝑣) ∈ 𝐺 𝑓 𝑖 then 𝑙 (𝑣) ≥ 𝑙 (𝑢) − 1.

Proof: Wewill prove this using induction on 𝑖 . Initially 𝑙 (𝑠) = 𝑛 and 𝑙 (𝑣) = 0 for all 𝑣 ∈ 𝑉 \ {𝑠}. Hence, for all edges (𝑢, 𝑣)
where 𝑢, 𝑣 ≠ 𝑠 this is satisfied. All the other edges incident on 𝑠 are in in(𝑠) in the residual graph. And 𝑙 (𝑠) = 𝑛 ≥ 𝑙 (𝑢) = 0.
Therefore, the base case is followed.

Now suppose the condition is true for 𝑓 𝑖−1. Now in the 𝑖𝑡ℎ iteration suppose the selected vertex is 𝑣 ∈ 𝑉 \ {𝑡} with
excess𝑓 𝑖−1 > 0. Now there are two possible cases.

• Case 1: If the step is relabeling then 𝑓 𝑖−1 = 𝑓 𝑖 , 𝐺 𝑓 𝑖−1 = 𝐺 𝑓 𝑖 but 𝑣 is relabeled by 𝑙 (𝑣) + 1. Now for any edge
𝑒 = (𝑢, 𝑣) ∈ in(𝑣) by Inductive Hypothesis 𝑙 (𝑣) ≥ 𝑙 (𝑢) − 1 =⇒ 𝑙 (𝑣) + 1 ≥ 𝑙 (𝑢) − 1. Now consider any edge
𝑒 = (𝑣 ,𝑤) ∈ out(𝑣). By Inductive Hypothesis we have 𝑙 (𝑤) ≥ 𝑙 (𝑣) − 1. Now if 𝑙 (𝑤) = 𝑙 (𝑣) − 1 then we would have
pushed flow along the edge (𝑣 ,𝑤). Since that is not the case we have 𝑙 (𝑤) > 𝑙 (𝑣) − 1. Therefore, 𝑙 (𝑤) ≥ (𝑙 (𝑣) + 1) − 1.
Hence, the condition is satisfied.

9.3 Preflow-Push/Push-Relabel Algorithm Page 68

• Case 2: If the step is pushing flow then suppose we push flow along the edge (𝑣 ,𝑤) ∈ 𝐸𝑓 𝑖−1 and 𝑙 (𝑤) = 𝑙 (𝑣) − 1.
Now if we push flow along the edge (𝑣 ,𝑤) we might introduce the reverse edge (𝑤 , 𝑣) in 𝐺 𝑓 𝑖 . In that case 𝑙 (𝑣) =
𝑙 (𝑤) + 1 ≥ 𝑙 (𝑤) − 1. Hence, the condition is satisfied.

Therefore, by mathematical induction ∀ 𝑖 , ∀ (𝑢, 𝑣) ∈ 𝐸𝑓 𝑖 , 𝑙 (𝑣) ≥ 𝑙 (𝑢) − 1. ■

Corollary 9.3.4
There is no 𝑠 ⇝ 𝑡 path in 𝐺 𝑓 𝑖 in any iteration 𝑖 . Thus when the algorithm terminates 𝑓 is a max flow.

Proof: Now 𝑙 (𝑠) = 𝑛 and 𝑙 (𝑡) = 0. We fix 𝑣 and 𝑖 . If there is a 𝑠 ⇝ 𝑣 path in 𝐺 𝑓 𝑖 then length of the path is at most
𝑛 − 1. For each edge in the path the label decreases by at most 1 by Lemma 9.3.3. Hence, 𝑙 (𝑣) ≥ 1. Therefore, for every
vertex 𝑣 ∈ 𝑉 , reachable from 𝑠 we have 𝑙 (𝑣) ≥ 1. But 𝑙 (𝑡) = 0. Hence, 𝑡 is not reachable from 𝑠 . Hence, if the algorithm
terminates, band if 𝑓 is a valid flow then y Max Flow Min Cut Theorem it is a max flow. ■

Corollary 9.3.5
∀ 𝑣 ∈ 𝑉 , ∀ 𝑖 , 𝑙 (𝑣) ≤ 2𝑛.

Proof: Suppose ∃ 𝑣 , 𝑖 such that 𝑙 (𝑣) = 2𝑛 and excess𝑓 𝑖 (𝑣) > 0. By Lemma 9.3.2 there exists an 𝑣 ⇝ 𝑠 path in 𝐺 𝑓 𝑖 . Now
by Lemma 9.3.3 for each edge in the path the label decreases by at most 1 and the length of the path is at most 𝑛 − 1. Since
𝑙 (𝑣) = 2𝑛, 𝑙 (𝑠) ≥ 𝑛 + 1. But we know 𝑙 (𝑠) for all 𝑖 by Observation 9.4. Hence, contradiction ETherefore, for all 𝑣 ∈ 𝑉 and
∀ 𝑖 , 𝑙 (𝑣) ≤ 2𝑛. ■

Corollary 9.3.6
Total number relabeling operations is ≤ 2𝑛2

Proof: By Corollary 9.3.5 each vertex label can be at most 2𝑛. So total number of relabeling operations done in the
algorithm is at most 2𝑛2 ■

Now we need a bound on the number of push operations. We will count separately the number of Saturating
Pushes and number of Non-Saturating Pushes.

Lemma 9.3.7
Total number of saturating pushes is ≤ 2𝑚𝑛

Proof: We first fix an edge (𝑣 ,𝑤). Now we will count the number of saturating pushes along (𝑣 ,𝑤). Then 𝛿 = 𝑐 𝑓 (𝑣 ,𝑤).
Now consider the scenario of two consecutive saturating pushes along (𝑣 ,𝑤). When the first saturating push along (𝑣 ,𝑤)
occurred we have 𝑙 (𝑤) = 𝑙 (𝑣) − 1. Now if (𝑣 ,𝑤) is forward edge then 𝛿 = 𝑐 𝑓 (𝑣 ,𝑤) = 𝑐𝑣,𝑤 − 𝑓 (𝑣 ,𝑤). Then new flow along
(𝑣 ,𝑤) is 𝑓 (𝑣 ,𝑤) + 𝑐 𝑓 (𝑣 ,𝑤) = 𝑐𝑣,𝑤 . Hence, the edge (𝑣 ,𝑤) vanishes and the flow along (𝑤 , 𝑣) is 𝑐𝑣,𝑤 . If (𝑣 ,𝑤) is a backward
edge then 𝛿 = 𝑐 𝑓 (𝑤 , 𝑣) = 𝑓 (𝑤 , 𝑣). Hence, then new flow along (𝑤 , 𝑣) is 𝑓 (𝑤 , 𝑣) − 𝛿 = 0. Hence, again the (𝑤 , 𝑣) edge
vanishes and the flow along (𝑤 , 𝑣) is 𝑓 (𝑤 , 𝑣).

𝑣

𝑤

𝑙 (𝑣)

𝑙 (𝑤) = 𝑙 (𝑣) − 1

Saturated Push
𝑣

𝑤

𝑙 (𝑣)

𝑙 (𝑤) = 𝑙 (𝑣) − 1

Therefore, after a saturated push along (𝑣 ,𝑤) the edge vanishes and the (𝑤 , 𝑣) edge is there. Hence, in order for
another push along (𝑣 ,𝑤) the algorithm must push flow along (𝑤 , 𝑣). And this happens when we have the new labels of

Page 69 Chapter 9 Maximum Flow

𝑣 ,𝑤 follow the condition 𝑙 ′ (𝑤) = 𝑙 ′ (𝑣) + 1. Since by Observation 9.2 the labels never decreases in order for 𝑙 (𝑤) = 𝑙 (𝑣) + 1
the label of 𝑣 must increase by at least 2.

Now starting from 𝑙 (𝑣) = 0 we have by Lemma 9.3.5 𝑙 (𝑣) ≤ 2𝑛 and for each saturating push along (𝑣 ,𝑤) the 𝑙 (𝑣)
increase by 2. Hence, at most 𝑛 many saturating pushes occurred along (𝑣 ,𝑤). Now in the original graph since there are
𝑚 edges the total number of saturating pushes is ≤ 2𝑚𝑛. ■

Now we will count the number of non-saturating pushes. For such pushes along any edge (𝑣 ,𝑢) the excess𝑓 (𝑣)
goes to 0. We define the potential function for a preflow 𝑓 ,

Φ(𝑓) =
∑︁

𝑣: excess𝑓 (𝑣)>0
𝑙 (𝑣)

Now Φ(𝑓) ≥ 0 for all preflow 𝑓 and initially at the start of the algorithm Φ(𝑓 0) = 0.

Lemma 9.3.8
For each non-saturating push Φ(𝑓) decreases by at least 1.

Proof: Suppose at any iteration 𝑖 a non-saturating push occur along an edge (𝑣 ,𝑤). Therefore, 𝑙 (𝑤) = 𝑙 (𝑣) − 1. We will
show that Φ(𝑓 𝑖) ≤ Φ(𝑓 𝑖−1) − 1. We have 𝛿 = excess𝑓 𝑖−1 (𝑣). Now if (𝑣 ,𝑤) is a forward edge then new flow along (𝑣 ,𝑤) is
𝑓 𝑖 (𝑣 ,𝑤) = 𝑓 𝑖−1 (𝑣 ,𝑤) + excess𝑓 𝑖−1 (𝑣). Since (𝑣 ,𝑤) ∈ out(𝑣)

excess𝑓 𝑖 (𝑣) =
∑︁

𝑒∈in(𝑣)
𝑓 𝑖 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 𝑖 (𝑒) =
∑︁

𝑒∈in(𝑣)
𝑓 𝑖−1 (𝑒) −

∑︁
𝑒∈out(𝑣)\{ (𝑣,𝑤) }

𝑓 𝑖−1 (𝑒) − 𝑓 𝑖 (𝑣 ,𝑤) = excess𝑓 𝑖−1 (𝑣) − 𝛿 = 0

Otherwise if (𝑣 ,𝑤) is a backward edge. Then ew flow along (𝑤 , 𝑣) is 𝑓 𝑖 (𝑤 , 𝑣) = 𝑓 𝑖−1 (𝑤 , 𝑣) − excess𝑓 𝑖−1 (𝑣). Since (𝑤 , 𝑣) ∈
in(𝑣)

excess𝑓 𝑖 (𝑣) =
∑︁

𝑒∈in(𝑣)
𝑓 𝑖 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 𝑖 (𝑒) = 𝑓 𝑖 (𝑤 , 𝑣) +
∑︁

𝑒∈in(𝑣)\{ (𝑤,𝑣) }
𝑓 𝑖−1 (𝑒) −

∑︁
𝑒∈out(𝑣)

𝑓 𝑖−1 (𝑒) = −𝛿 + excess𝑓 𝑖−1 (𝑣) = 0

In both cases excess𝑓 𝑖 (𝑣) = 0. Therefore, 𝑣 goes out of the summation. Now there are two cases depending on the value of
excess𝑓 𝑖−1 (𝑤)

• Case 1: If excess𝑓 𝑖−1 (𝑤) > 0 i.e. 𝑤 had excess flow before push operation then Φ(𝑓 𝑖−1) decreases by 𝑙 (𝑣) i.e.
Φ(𝑓 𝑖) = Φ(𝑓 𝑖−1) − 𝑙 (𝑣). Since 𝑙 (𝑤) = 𝑙 (𝑣) − 1 and by Observation 9.2 𝑙 (𝑣) ≥ 1. Therefore, Φ(𝑓 𝑖) = Φ(𝑓 𝑖−1) − 𝑙 (𝑣) ≤
Φ(𝑓 𝑖−1) − 1.

• Case 2: If excess𝑓 𝑖−1 (𝑤) = 0, then excess𝑓 𝑖 (𝑤) = excess𝑓 𝑖−1 (𝑤) + 𝛿 > 0 since 𝛿 = excess𝑓 𝑖−1 (𝑣) > 0 and Therefore,
Φ(𝑓 𝑖) = Φ(𝑓 𝑖−1) − 𝑙 (𝑣) + 𝑙 (𝑤) = Φ(𝑓 𝑖−1) − 1

Hence, for both the cases Φ(𝑓 𝑖) ≤ Φ(𝑓 𝑖−1) − 1. Therefore, Φ(𝑓 𝑖−1) decreases by at least 1. ■

Observation 9.5. For relabeling operation Φ(𝑓) increases by 1.

Since there are at most 2𝑛2 relabeling operations by Corollary 9.3.6, Φ(𝑓) increases by at most 2𝑛2 with relabeling
operations.

Observation 9.6. For each saturating push excess𝑓 (𝑣 ,𝑤) might not go to 0 and Therefore, Φ might increase.

Now by Lemma 9.3.7 total number of saturated pushes is at most 2𝑚𝑛. And by Corollary 9.3.5 each vertex has label
at most 2𝑛. Hence, in total Φ(𝑓) can increase at most 2𝑚𝑛 × 2𝑛 = 4𝑚𝑛2 by saturated pushes. Hence, Φ(𝑓) increases at
most 2𝑛2 + 2𝑚𝑛 × 2𝑚 = 𝑂 (𝑚𝑛2).

Now

#Non-saturating Pushes ≤ Total decrease in Φ ≤ Total increase in Φ ≤ 2𝑛2 + 4𝑚𝑛2 = 𝑂 (𝑚𝑛2)

Therefore, total number of iterations of the While loop is #Relabeling+#Saturated Push+#Non-saturated Push= 2𝑛2 +
2𝑚𝑛 +𝑂 (𝑚𝑛2) = 𝑂 (𝑚𝑛2). There fore the algorithm takes 𝑂 (𝑚𝑛2) iteration. In each iteration it takes 𝑂 (𝑚 + 𝑛) time.
Therefore, the runtime of the algorithm is 𝑂 (𝑚𝑛2)𝑂 (𝑛 +𝑚) = 𝑂 (𝑚2𝑛2).

Chapter 10
Randomized Algorithm

Here we will study randomized algorithm for tow basic problems. Later we will discuss other randomized algorithms too
in the next chapters. We will also try to derandomize an algorithm in the next chapter.

10.1 Estimated Binary Search Tree Height

In this section we will calculate the expected height of a tree obtained by constructing a binary tree by picking elements
uniformly at random from a given array. For this we have the following simple Intersection Algorithm

Algorithm 41: Simple Intersection Algorithm
Input: Array 𝐴 of 𝑛 elements of [𝑛] in any order.
Output: Construct a binary tree from 𝐴

1 begin

2 𝑆 ←− 𝐴
3 𝑇 ←− ∅
4 while 𝑆 ≠ ∅ do
5 𝑢 ←− Extract(𝑆)
6 Insert each element at the appropriate leaf of 𝑇
7 return 𝑇

Question 10.1

What is the expected height of the tree obtained by this Simple Intersection Algorithm assuming sequence of
keys is uniformly random permutation of [𝑛].

Suppose𝑋𝑛 be the random variable for the height of the tree obtained by the algorithm running on any permutation
of [𝑛]. Let 𝑅𝑛 be the random variable for the root of the tree obtained by the algorithm. Now consider the random variable
𝑌𝑛 defined as 𝑌𝑛 = 2𝑋𝑛 . Then, if we know 𝑅𝑛 = 𝑖 we have

𝑋𝑛 = 1 +max{Height of left subtree, Height of right subtree} = 1 +max{𝑋𝑖−1 +𝑋𝑛−𝑖 } =⇒ 𝑌𝑛 = 2max{𝑌𝑛−1,𝑌𝑛−𝑖 }

Now for the case of 𝑛 = 1 𝑌1 = 1 since there is only one element and for the convenience we define 𝑌0 = 0. Now consider
the following indicator random variable 𝑍𝑛,𝑖 where

𝑍𝑛,𝑖 =

{
1 if 𝑖 is first element
0 otherwise

So basically 𝑍𝑛,𝑖 = 1{𝑅𝑛 = 𝑖}. Now if 𝑖 is the first element then 𝑖 the root of the tree obtained by the algorithm. Therefore

Page 71 Chapter 10 Randomized Algorithm

we have

𝑌𝑛 =

𝑛∑︁
𝑖=1

𝑍𝑛,𝑖 (1 +max{𝑌𝑖−1,𝑌𝑛−𝑖 })

≤ 2
𝑛∑︁
𝑖=1

𝑍𝑛,𝑖 (𝑌𝑖−1 +𝑌𝑛−𝑖) [Using Lemma 10.1.1]

Lemma 10.1.1 Soft Max

For any 𝑎,𝑏 ∈ R,
max{𝑎,𝑏} ≤ log(2𝑎 + 2𝑏)

Therefore, we have

E[𝑌𝑛] ≤ 2
𝑛∑︁
𝑖=1

E
[
𝑍𝑛,𝑖 (𝑌𝑖−1 +𝑌𝑛−𝑖)

]
= 2

𝑛∑︁
𝑖=1

E[𝑍𝑛,𝑖]E[𝑌𝑖−1 +𝑌𝑛−𝑖]

=
2
𝑛

𝑛∑︁
𝑖=1
(E[𝑌𝑖−1] +E[𝑌𝑛−𝑖]) =

4
𝑛

𝑛−1∑︁
𝑖=0

E[𝑌𝑖]

Now to compute E[𝑌𝑛] we use the following lemma

Lemma 10.1.2

E[𝑌𝑛] ≤
1
4

(
𝑛 + 3
3

)
Proof: We will prove this using induction on 𝑛. The base case is true for 𝑛 = 0. Suppose this is true for 0, . . . ,𝑛 − 1.

E[𝑌𝑛] ≤
4
𝑛

𝑛−1∑︁
𝑖=0

E[𝑌𝑖] ≤
1
𝑛

𝑛−1∑︁
𝑖=0

(
𝑖 + 3
3

)
=

1
𝑛

(
𝑛 + 3
4

)
=

1
𝑛

(𝑛 + 3)!
4!(𝑛 − 1)! =

1
4

(
𝑛 + 3
3

)
Hence by mathematical induction this is true for all 𝑛. ■

Hence, by the lemma we have E[𝑌𝑛] ≤ 1
4
(
𝑛+3
3

)
= 𝑂 (𝑛3). Now by Jensen Inequality we have

E[𝑌𝑛] = E[2𝑋𝑛] ≥ 2E[𝑋𝑛]

Therefore E[𝑋𝑛] ≤ 𝑂 (log𝑛). Therefore, the expected height of a binary search tree is 𝑂 (log𝑛).

10.2 Solving 2-SAT

In this section we will discuss a randomized algorithm for deciding if a 𝑛-variate 2-SAT boolean formula is satisfiable or
not.

2-SAT
Input: 2-SAT formula 𝜑 consisting of 𝑛 variables.
Question: Given 𝑛-variate 2-SAT boolean formula determine if 𝜑 is satisfiable.

Here we give a simple randomized algorithm for solving the 2-SAT problem:

10.2 Solving 2-SAT Page 72

Algorithm 42: 2-SAT Randomized Algorithm
Input: 𝑛 variate 2-SAT formula 𝜑
Output: Decide if 𝜑 is satisfiable or not

1 begin

2 ∀ 𝑖 ∈ [𝑛], Set 𝑥𝑖 = 0
3 while ∃ clause 𝐶 that is not satisfied do

4 Let 𝑥𝑖 and 𝑥 𝑗 be variables in 𝐶
5 Pick from {𝑥𝑖 ,𝑥 𝑗 } with equal probability and flip the assignment for that variable.
6 return 𝑥

Now if the algorithm terminates it terminates with a satisfying assignment. For now assume that 𝜑 is satisfiable.
We will deal with the case that 𝜑 is not satisfiable later.

Now since there are 𝑛 variables there can be at most𝑂 (𝑛2) many clauses can be in the formula. Therefore, for each
step of the while loop to occur it can at most take 𝑂 (𝑛2) time to find a clause which is not satisfied.

Let 𝑆 represents the set of satisfying assignments for 𝜑 . Let at 𝑗𝑡ℎ iteration let 𝐴 𝑗 denote the current assignment of
the variables. Let 𝑋 𝑗 be the random variable which denotes maximum number of variables of 𝐴 𝑗 that matches with some
satisfying assignment of 𝑆 i.e.

𝑋 𝑗 = max{𝑛 − |𝑥 −𝐴 𝑗 | : 𝑥 ∈ 𝑆}

At any step if 𝑋 𝑗 = 𝑛 then the algorithm terminates since the algorithm has found a satisfying assignment. Now starting
with 𝑋 𝑗 < 𝑛 we consider how 𝑋 𝑗 evolves over time and how long it takes before 𝑋 𝑗 reaches 𝑛.

Now at each step we pick a clause which is unsatisfied. So we know 𝐴 𝑗 and all assignments of 𝑆 disagree on
the value of at least one variable of this clause. If all the assignments in 𝑆 disagree with 𝐴 𝑗 on both variables changing
either one will increase 𝑋 𝑗 . If there are assignments in 𝑆 which disagree on the value of one of the two variables then
with probability 1

2 we choose that variable and increase 𝑋 𝑗 by 1 and with probability 1
2 we choose the other variable and

decrease 𝑋 𝑗 by 1.
Therefore, 𝑋 𝑗 behaves like a random walk on a line starting from 0 which denotes the worst possible case and ends

once it reaches at 𝑛 where at any nonzero point it goes up or down by 1 with probability 1
2 . This is a Markov Chain.

We want to calculate how many steps does it take on average for 𝑋 𝑗 to stumble all the way up to 𝑛. Before that we first
properly define our Markov Chain.

The Markov Chain consists states from 0 to 𝑛. Where from 0 it goes to 1 with probability 1 and from 𝑛 it always
stays at 𝑛. And for any other state 𝑖 it goes to 𝑖 + 1 with probability 1

2 and goes to 𝑖 − 1 with probability 1
2 . Now let

𝑇 (𝑘) = Expected time to walk from 𝑘 to 𝑛

Then we have
𝑇 (𝑛) = 0, 𝑇 (0) = 𝑇 (1) + 1, ∀ 𝑖 ∈ [𝑛 − 1], 𝑇 (𝑖) = 𝑇 (𝑖 − 1)2 + 𝑇 (𝑖 + 1)2 + 1

Then we have 𝑛 unknowns and 𝑛 equations in the above system. Therefore, on average at most𝑂 (𝑛2) steps needed to find
a solution.

Now at first we said we are assuming we are dealing with the case of there exists a solution.

Question 10.2

How to deal with the issue of no solution?

In this case we will run for more number of iterations before we give up since when we give up we me might just
not have found the solution. So we will run the algorithm for 100𝑛2 steps. And if no solution was found then we will give
up.

We first of all divide the execution of the algorithm into segments of 2𝑛2 steps each. We will calculate the failure
case of each segment. If the 2-SAT formula has no solution then the algorithm gives correct output. Suppose it has a
solution. Then by Markov’s Inequality the probability of number of steps needed to find the solution is greater than the
expected number of steps needed to find a solution is at most 1

2 . Now after total 100𝑛2 steps the probability none of the
segments found a solution is 2−50.

Chapter 11
Derandomization

In this section we will see a derandomization technique called Conditional Expectation. With this technique we will show
derandomization of some randomized algorithms in the following sections.

11.1 Conditional Expectation

Let A be a randomized algorithm which is successful with probability at least 2
3 . Suppose A uses 𝑚 random bits and

suppose the random bits are 𝑅1, . . . ,𝑅𝑚 . Then we have

P
𝑅1 ,...,𝑅𝑚

[A (𝑥 ,𝑅1, . . . ,𝑅𝑚) = Correct] ≥ 2
3

We want to derandomize A .
Now think of A as a binary tree which, given 𝑥 , branches on the sampled value of each random bit 𝑅𝑖 where it

goes to left child if the random bit takes value 0 and goes to right child if the random bit takes value 1. Every path in this
tree from root to leaf corresponds to different possible random strings and the leaf nodes corresponds to the output of the
algorithm with the corresponding random string. Since A succeeds with probability at least 2

3 means that at least 2
3 of

the leaves are good outputs for the input 𝑥 .
Idea. To derandomize A we need to find a deterministic algorithm that traverses from the root to a leaf which at any branch

at level 𝑖 chooses a direction which leads to a good output.

Now suppose 𝑟1, . . . , 𝑟𝑚 ∈ {0, 1} denote the values taken by the random variables 𝑅1, . . . ,𝑅𝑚 . Now let 𝑃 (𝑟1, . . . , 𝑟𝑖)
denote the fraction of the leaves of the subtree below the node obtained by following the path 𝑟1, . . . , 𝑟𝑖 . Formally,

𝑃 (𝑟1, . . . , 𝑟𝑖) = P[A (𝑥 ,𝑅1, . . . ,𝑅𝑚) | 𝑅1 = 𝑟1, . . . ,𝑅𝑖 = 𝑟𝑖] =
1
2𝑃 (𝑟1, . . . , 𝑟𝑖 , 0) +

1
2𝑃 (𝑟1, . . . , 𝑟𝑖 , 1)

From the last equality it is clear that there is a choice 𝑟𝑖+1 such that 𝑃 (𝑟1, . . . , 𝑟𝑖+1) ≥ 𝑃 (𝑟1, . . . , 𝑟𝑖). Therefore to find a good
path in the tree it suffices at each branch to pick such an 𝑟 ∈ {0, 1}. Then we would have

𝑃 (𝑟1, . . . , 𝑟𝑚) ≥ 𝑃 (𝑟1, . . . , 𝑟𝑚−1) ≥ · · · ≥ 𝑃 (𝑟1) ≥ P[A (𝑥 ,𝑅1, . . . ,𝑅𝑚) = Correct] ≥ 2
3

Since 𝑃 (𝑟1, . . . , 𝑟𝑚) is either 0 or 1 it must be 1.

11.2 Max-SAT

Max-SAT
Input: SAT formula 𝜑 with 𝑛 variables and𝑚 clauses and non negative weights𝑤𝑐 on clauses.
Question: Given a SAT formula 𝜑 with 𝑛 variables and𝑚 clauses and non negative weights𝑤𝑐 on clauses find

an assignment that maximizes weight of satisfied clauses.

We will first show a randomized algorithm for this problem. Then we will use conditional expectation to deran-
domize the algorithm.

11.3 Set Balancing Page 74

11.2.1 Randomized Algorithm

First lets see what is the expected weight of satisfied clauses. Let𝑌𝑐 be the indicator random variable if clause𝐶 is satisfied.
Suppose there are 𝑘 variables in 𝐶 . Then we have E[𝑌𝑐] = 1 − 1

2𝑘 ≥
1
2 . Therefore expected weight of satisfied clauses is

E

[∑︁
𝐶

𝑤𝑐𝑌𝑐

]
=

∑︁
𝐶

𝑤𝑐E[𝑌𝑐] ≥
1
2
∑︁
𝐶

𝑤𝑐

Let OPT be the optimal Max-SAT solution for the given formula. Then we have
∑
𝐶

𝑤𝑐 ≥ OPT. Therefore

E

[∑︁
𝐶

𝑤𝑐𝑌𝑐

]
≥ 1

2OPT

Hence we have the following randomized algorithm:

Algorithm 43: 2-Approximate Max-SAT
Input: SAT formula 𝜑 with 𝑛 variables and𝑚 clauses and non negative weights𝑤𝑐 on clauses.
Output: Find an assignment that maximizes weight of satisfied clauses.

1 begin

2 for 𝑖 ∈ [𝑛] do
3 𝑥𝑖 ←− Pick a value from {0, 1} uniformly at random
4 return 𝑥

By the above discussion we have an assignment with an expected weight of satisfied clauses at least half the
maximum.

11.2.2 Derandomization

Now we want to derandomize the algorithm using conditional expectation. Let 𝑋1, . . . ,𝑋𝑛 denote the random variable
for each variables and 𝑥1, . . . ,𝑥𝑛 ∈ {0, 1} denote the value the random variables took. A key step will be evaluate the
conditional probabilities:

E

[∑︁
𝐶

𝑤𝑐𝑌𝑐 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 𝑥𝑖

]
=

∑︁
𝐶

𝑤𝑐P[𝑌𝑐 = 1 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 𝑥𝑖] ∀ 𝑖 ∈ [𝑛]

Hence we have to find the value of P[𝑌𝑐 = 1 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 𝑥𝑖], ∀ 𝑖 ∈ [𝑛]. Now if the clause 𝐶 is already satisfied by
the setting 𝑥1, . . . ,𝑥𝑖 then 𝑌𝐶 = 1. Else if 𝐶 has 𝑟 variables from 𝑥𝑖+1, . . . ,𝑥𝑛 then

P[𝑌𝑐 = 1 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 𝑥𝑖] = 1 − 1
2𝑟

. Now if at height 𝑖 , we find E [∑𝐶 𝑤𝑐𝑌𝑐 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 0] and E [∑𝐶 𝑤𝑐𝑌𝑐 | 𝑋1 = 𝑥1, . . . ,𝑋𝑖 = 1] and which ever gives
the higher value we will set the assignment for 𝑋𝑖 to be that one. Thus we can derandomize the algorithm.

11.3 Set Balancing

Set-Balance
Input: 𝐴 ∈ {0, 1}𝑛×𝑛 matrix with 𝐴𝑖 is the 𝑖𝑡ℎ row of 𝐴 and 𝐴𝑖 ,𝑗 is the (𝑖 , 𝑗)𝑡ℎ entry
Question: Given 𝑛 ×𝑛, 0-1 matrix 𝐴 find 𝑏 ∈ {1,−1}𝑛 to minimize ∥𝐴𝑏∥∞ = max

𝑖∈[𝑛]
|𝐴𝑖𝑏 |.

In the following sections we will not optimize on ∥𝐴𝑏∥∞. Instead we will give bound on how large min ∥𝐴𝑏∥∞ can
be for any 𝐴.

Page 75 Chapter 11 Derandomization

Algorithm 44: Set-Balancing
Input: 𝐴 ∈ {0, 1}𝑛×𝑛 matrix
Output: Find an 𝑏 ∈ {1,−1}𝑛 to minimize ∥𝐴𝑏∥∞

1 begin

2 for 𝑖 ∈ [𝑛] do
3 𝑥𝑖 ←− Pick a value from {1,−1} uniformly at random
4 return 𝑥

11.3.1 Randomized Algorithm

Clearly for each row 𝑖 ∈ [𝑛] we have

E[𝐴𝑖𝑏] = E

[∑︁
𝑗

𝐴𝑖 ,𝑗𝑏 𝑗

]
=

∑︁
𝑗

E[𝐴𝑖 ,𝑗𝑏 𝑗] = 0

But that does not mean E[|𝐴𝑖𝑏 |] = 0. To get a bound on E[|𝐴𝑖𝑏 |] we will use Hoeffding’s Inequality

Theorem 11.3.1 Hoeffding’s Inequality

Let 𝑌1, . . . ,𝑌𝑛 be independent random variables with bounded supposer [𝑙𝑖 ,𝑢𝑖] for 𝑌𝑖 and let 𝑌 =
𝑛∑
𝑖=1
𝑌𝑖 . Then for

any 𝛿 > 0

P[|𝑌 −E[𝑌] | > 𝛿] ≤ 2𝑒
− 2𝛿2∑

𝑖
(𝑢𝑖 −𝑙𝑖)2

In our case we have 𝑌𝑖 ,𝑗 = 𝐴𝑖 ,𝑗𝑏 𝑗 and 𝑌𝑖 =
∑
𝑗

𝐴𝑖 ,𝑗𝑏 𝑗 . Then each 𝑌𝑖 ,𝑗 ∈ {−1, 0, 1}, E[𝑌𝑖 ,𝑗] = 0 and E[𝑌𝑖] = 0. Therefore

P[|𝑌𝑖 | > 𝛿] ≤ 2𝑒−
2𝛿2
4𝑛

Now we choose 𝛿 = 2
√
𝑛 ln𝑛

P[|𝐴𝑖𝑏 | ≥ 2
√
𝑛 ln𝑛] ≤ 2

𝑛2

Therefore P[∥𝐴𝑏∥∞ ≥ 2
√
𝑛 ln𝑛] ≤ 2

𝑛
by union bound. Hence choosing each entry 𝑏 uniformly at random from ±1 we can

obtain ∥𝐴𝑏∥∞ ≤ 2
√
𝑛 ln𝑛 with high probability.

11.3.2 Derandomization

Again we will use conditional expectation to derandomize the algorithm. Let a node at height 𝑗 corresponds to a setting
of 𝑏1, . . . ,𝑏 𝑗 and we will calculate P[∥𝐴𝑏∥∞ > 2

√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗]. Now consider a leaf corresponding to some choice

of 𝑏1, . . . ,𝑏𝑛 such that the value of the leaf is < 1. But there is no randomness at the leaf. Then P[∥𝐴𝑏∥∞ > 2
√
𝑛 ln𝑛 |

𝑏1, . . . ,𝑏𝑛] = 0. Hence for this choice of 𝑏1, . . . ,𝑏𝑛 it must have ∥𝐴𝑏∥∞ ≤ 2
√
𝑛 ln𝑛. Now

P[∥𝐴𝑏∥∞ > 2
√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗] = P[∥𝐴𝑏∥∞ > 2

√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗 , 0] +P[∥𝐴𝑏∥∞ > 2

√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗 , 1]

One of them have
P[∥𝐴𝑏∥∞ > 2

√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗 ,𝑏 𝑗+1] ≤ P[∥𝐴𝑏∥∞ > 2

√
𝑛 ln𝑛 | 𝑏1, . . . ,𝑏 𝑗]

So we choose that one. Also note that at the root P[∥𝐴𝑏∥∞ > 2
√
𝑛 ln𝑛] < 2

𝑛
. Then for choosing such a path for the

corresponding choice of 𝑏 we will have ∥𝐴𝑏∥∞ ≤ 𝑀 = 2
√
𝑛 ln𝑛. But this depends on being able to calculate P[∥𝐴𝑏∥∞ >

𝑀 | 𝑏1, . . . ,𝑏 𝑗] which we don’t know how to do in polynomial time. Instead we will use pessimistic estimator which.

11.3 Set Balancing Page 76

11.3.3 Using Pessimistic Estimator to Derandomize

Instead of P[∥𝐴𝑏∥∞ > 𝑀 | 𝑏1, . . . ,𝑏 𝑗] we will use
∑

𝑖∈[𝑛]
P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗]. Naturally we have

∑︁
𝑖∈[𝑛]

P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗] ≥ P[∥𝐴𝑏∥∞ > 𝑀 | 𝑏1, . . . ,𝑏 𝑗]

Now we know how to calculate P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗]. For any 𝑖 ∈ [𝑛] we have

P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗] =
𝑛∑︁

𝑘=𝑀+1
P[𝐴𝑖𝑏 = 𝑘 | 𝑏1, . . . ,𝑏 𝑗] +P[𝐴𝑖𝑏 = −𝑘 | 𝑏1, . . . ,𝑏 𝑗]

Let 𝑆𝑖 = { 𝑗 ′ > 𝑗 : 𝐴𝑖 ,𝑗 ′ = 1} and 𝑙 = ∑
𝑗 ′≤ 𝑗

𝐴𝑖 ,𝑗 ′ . Then

P[𝐴𝑖𝑏 = 𝑘 | 𝑏1, . . . ,𝑏 𝑗] = P

[∑︁
𝑗 ′∈𝑆𝑖

𝑏 𝑗 ′ = 𝑘 − 𝑙
]

Let in 𝑆𝑖 𝑛𝑖 coordinates of 𝑏 are 1 and rest of the coordinates of 𝑏 in 𝑆𝑖 are −1. Then∑︁
𝑗 ′∈𝑆𝑖

𝑏 𝑗 ′ = 2𝑛𝑖 − |𝑆𝑖 | = 𝑘 − 𝑙 =⇒ 𝑛𝑖 =
1
2 (𝑘 − 𝑙 + |𝑆𝑖 |)

Therefore we have
P[𝐴𝑖𝑏 = 𝑘 | 𝑏1, . . . ,𝑏 𝑗] =

1
2 |𝑆𝑖 |

(|𝑆𝑖 |
1
2 (𝑘 − 𝑙 + |𝑆𝑖 |)

)
Thuswe can calculateP[𝐴𝑖𝑏 = 𝑘 | 𝑏1, . . . ,𝑏 𝑗] for all𝑛 ≥ |𝑘 | > 𝑀 . Therefore we can calculateP[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗] and
henceforth

∑
𝑖∈[𝑛]

P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗]. With this pessimistic estimator we calculate at height 𝑗 both
∑

𝑖∈[𝑛]
P[|𝐴𝑖𝑏 | >

𝑀 | 𝑏1, . . . ,𝑏 𝑗 ,𝑏 𝑗+1 = 0] and ∑
𝑖∈[𝑛]

P[|𝐴𝑖𝑏 | > 𝑀 | 𝑏1, . . . ,𝑏 𝑗 ,𝑏 𝑗+1 = 1] and the one which have value less than 1 we will

follow that path and eventually we will get an assignment of 𝑏 for which ∥𝐴𝑏∥∞ ≤ 2
√
𝑛 ln𝑛.

Chapter 12
Global Min Cut

Global Min Cut
Input: Undirected graph 𝐺 = (𝑉 ,𝐸)
Question: Find cut (𝑆 ,𝑉 \ 𝑆) that minimizes |𝛿 (𝑆) | where 𝛿 (𝑆) = {𝑒 = (𝑢, 𝑣) | 𝑢 ∈ 𝑆 , 𝑣 ∉ 𝑆}.

12.1 Naive Algorithm

In previous chapter we have seen the algorithm to find 𝑠 − 𝑡 min cut given any 𝑠 , 𝑡 ∈ 𝑉 in 𝑂 (𝑛2
√
𝑚) time. So naively we

can run over all possible vertex pairs (𝑠 , 𝑡) and output the global min cut in 𝑂 (𝑛4
√
𝑚) time.

Or we can fix a vertex 𝑠 ∈ 𝑉 and then for all 𝑡 ∈ 𝑉 we can find the 𝑠 − 𝑡 min cut and output the minimum. This
takes 𝑂 (𝑛3

√
𝑚) time.

12.2 Karger’s GMC Algorithm

Instead of naively solving the problem like above we will use randomization and will construct an algorithm which will
output a global min-cut with high probability using edge contraction.

Definition 12.2.1: Edge Constraction

Given a graph𝐺 = (𝑉 ,𝐸), 𝑒 = (𝑢, 𝑣) edge contraction gives a multigraph (graph with multiple edges between two
vertices but no self-loops) 𝐺 \ 𝑒 = (𝑉 ′,𝐸′) where 𝑉 ′ = 𝑉 \ {𝑢, 𝑣} ∪ {𝑣𝑒 } and for all 𝑒′ ∈ 𝐸 if 𝑒 ∩ 𝑒′ = ∅ then 𝑒′ ∈ 𝐸
and otherwise 𝑒′ = (𝑤 ,𝑢) then (𝑤 , 𝑣𝑒) ∈ 𝐸′. The vertex 𝑣𝑒 is called the supernode.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓
=⇒ 𝑎

𝑏

𝑐

𝑓
𝑣
𝑑𝑒

Observation. For any edge 𝑒 ∈ 𝐺 :

• Any cut in 𝐺 \ 𝑒 is also a cut in 𝐺 of same size.

• Size of min cut in 𝐺 \ 𝑒 is at least the size of min cut in 𝐺 .

• Any cut in 𝐺 that does not separate vertices of 𝑒 is also cut in 𝐺 \ 𝑒 .

Then we have the following lemma:

12.2 Karger’s GMC Algorithm Page 78

Lemma 12.2.1
Say 𝑘 is the size of global min cut in 𝐺 ′ = (𝑉 ′,𝐸′) [𝐺 possible a multigraph] i.e. ∃ 𝑆 ⊆ 𝑉 ′ such that |𝛿 (𝑆) | = 𝑘 .
Then min{deg(𝑣) | 𝑣 ∈ 𝑉 ′} ≥ 𝑘 and |𝐸′ | ≥ 𝑘

2 |𝑉
′ |.

Proof: If any vertex 𝑣 ∈ 𝑉 ′ has degree less than 𝑘 then we can take the cut ({𝑣},𝑉 ′ \ {𝑣}) then |𝛿 (𝑣) | < 𝑘 , but that
contradicts the fact that size of global min cut is 𝑘 . Hence, contradiction ETherefore ∀ 𝑣 ∈ 𝑉 ′, deg(𝑣) ≥ 𝑘 . Therefore,
|𝐸′ | = 1

2
∑
𝑣∈𝑉 ′

deg(𝑣) ≥ 𝑘
2 · |𝑉

′ |. ■

So we at each round we will pick an edge from the graph uniformly at random and then contract that edge and in
the next round we will pick an edge from the contracted graph. We will do 𝑛 − 2 such iterations since after that we are
left with 2 supernodes (𝑋 ,𝑉 \𝑋).

Algorithm 45: Karger’s GMC Algorithm
Input: Undirected graph 𝐺 = (𝑉 ,𝐸)
Output: Find a cut (𝑆 ,𝑉 \ 𝑆) such that |𝛿 (𝑆) | is minimum

1 begin

2 𝐻 ←− 𝐺 ;
3 for 𝑖 = 1, . . . ,𝑛 − 2 do
4 𝑒 ←−Picked uniformly at random from 𝐸;
5 𝐻 ←− 𝐻 \ 𝑒;
6 return 𝐸 (𝐻)

Question 12.1

What is the probability that the above algorithm returns a global min cut?

Let (𝑆 ,𝑉 \ 𝑆) is the global min cut with |𝛿 (𝑆) | = 𝑘 . Now probability that the algorithm returns (𝑆 ,𝑉 \ 𝑆) is equal
to the probability that none of the edges in 𝛿 (𝑆) is picked. So let 𝑒1, . . . , 𝑒𝑛−2 are the edges that are picked in the 𝑛 − 2
iterations of the algorithm. We need to calculate P[𝑒𝑖 ∉ 𝛿 (𝑆), ∀ 𝑖 ∈ [𝑛 − 2]]

Lemma 12.2.2
P[𝑒1 ∉ 𝛿 (𝑆)] ≥ 1 − 2

𝑛

Proof: We have |𝛿 (𝑆) | = 𝑘 . Hence, we have |𝐸 | ≥ 𝑛 ·𝑘
2 . Since 𝑒1 is picked uniformly at random we have

P[𝑒1 ∉ 𝛿 (𝑆)] ≥ 1 − 𝑘

𝑛𝑘
2

= 1 − 2
𝑛

Hence we have the lemma. ■

Lemma 12.2.3
P[𝑒𝑖 ∉ 𝛿 (𝑆) | 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆)] ≥ 1 − 2

𝑛−𝑖+1

Proof: Let 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆). Hence 𝑆 is still a min cut in 𝐺 \ {𝑒1, . . . , 𝑒𝑖−1}. Then number of edges after contracting
𝑒1, . . . , 𝑒𝑖−1 is at least 𝑘 (𝑛−𝑖+1)2 . Therefore

P[𝑒𝑖 ∉ 𝛿 (𝑆) | 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆)]1 −
𝑘

𝑘 (𝑛−𝑖+1)
2

= 1 − 2
𝑛 − 𝑖 + 1

Therefore we have the lemma. ■

Page 79 Chapter 12 Global Min Cut

Hence we have

P[Success] ≥ P[𝑒𝑖 ∉ 𝛿 (𝑆), ∀ 𝑖 ∈ [𝑛 − 2]]

=

𝑛−2∏
𝑖=1

(
1 − 2

𝑛 − 𝑖 + 1

)
=

2
𝑛(𝑛 − 1) =

1(
𝑛
2
) = 𝑂

(
1
𝑛2

)
So we run the above algorithm 2𝑛2 log𝑛 times then take the cut which gives minimum size. Then we have

P[Succeeds] = 1 −P[All 4𝑛2 log𝑛 runs fails]

≥ 1 −
(
1 − 2

𝑛2

)4𝑛2 log𝑛
≥ 1 − exp

[
− 2
𝑛2

2𝑛2 log𝑛
]

= 1 − 1
𝑛4

Hence, this gives a much higher probability of success. So our final algorithm is

Algorithm 46: Multiple run of Karger’s GMC Algorithm
Input: Undirected graph 𝐺 = (𝑉 ,𝐸)
Output: Find a cut (𝑆 ,𝑉 \ 𝑆) such that |𝛿 (𝑆) | is minimum

1 begin

2 𝑆 ←− ∅;
3 𝑐𝑢𝑡𝐸𝑑𝑔𝑒𝑆𝑖𝑧𝑒 ←− |𝐸 |;
4 for 𝑖 ∈ [2𝑛2 log𝑛] do
5 𝐻 ←− 𝐺 ;
6 for 𝑗 = 1, . . . ,𝑛 − 2 do
7 𝑒 ←−Picked uniformly at random from 𝐸;
8 𝐻 ←− 𝐻 \ 𝑒;
9 if |𝐸 (𝐻) | < 𝑐𝑢𝑡𝐸𝑑𝑔𝑒𝑆𝑖𝑧𝑒 then
10 Let 𝐻 = (𝑋 ,𝑉 \𝑋);
11 𝑆 ←− 𝑋 ;
12 𝑐𝑢𝑡𝐸𝑑𝑔𝑒𝑆𝑖𝑧𝑒 ←− |𝐸 (𝐻) |;

13 return 𝑆

12.3 Karger-Stein Algorithm

In Karger’s algorithm the probability of getting a min cut is low because in later stages the probability of picking an edge
from a min-cut is high because

P[𝑒𝑖 ∈ 𝛿 (𝑆) | 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆)] ≤
2

𝑛 − 𝑖 + 1 =⇒ P[𝑒1, . . . , 𝑒𝑖 ∉ 𝛿 (𝑆)] ≥
(
𝑛−𝑖
2

)(
𝑛
2
)

If the above probability is at least 1
2 then 2(𝑛 − 𝑖)2 ≥ 𝑛2 =⇒ 𝑛 − 𝑖 ≥ 𝑛√

2 . Hence, 𝑖 can’t be too high.
So instead of running the entire algorithm 𝑂̃ (𝑛2) times we can just run the later stages multiple times. So after

𝑖 ≤ 𝑛 − 𝑛√
2 − 1 iterations of Karger’s GMC algorithm we have

P[𝑒1, . . . , 𝑒𝑖 ∉ 𝛿 (𝑆)] ≥
(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)

𝑛(𝑛 − 1) ≥ 𝑛2

2𝑛(𝑛 − 1) ≥
1
2

12.3 Karger-Stein Algorithm Page 80

from Lemma 12.2.3. We also have the following lemma:

Lemma 12.3.1
For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 2 we have

P[𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒 𝑗 ∉ 𝛿 (𝑆) | 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆)] ≥
(𝑛 − 𝑗) (𝑛 − 𝑗 − 1)
(𝑛 − 𝑖 + 1) (𝑛 − 𝑖)

Now fix an 𝑖 ≤ 𝑛 − 2. Let 𝑙 = 𝑛 − 𝑖 + 1. Then For 𝑗 ≤ 𝑛 − 𝑙√
2 − 1 we have

P[𝑒𝑖 , . . . , 𝑒𝑖+𝑗−1 ∉ 𝛿 (𝑆) | 𝑒1, . . . , 𝑒𝑖−1 ∉ 𝛿 (𝑆)] ≥
𝑙2

2𝑙 (𝑙 − 1) ≥
1
2

So we have the following algorithm:

Algorithm 47: KS-Algorithm
Input: Undirected graph 𝐺 = (𝑉 ,𝐸)
Output: Find a cut (𝑆 ,𝑉 \ 𝑆) such that |𝛿 (𝑆) | is minimum

1 begin

2 if |𝑉 | = 2 then
3 return Any vertex of 𝑉

4 Run Karger’s GMC Algorithm on 𝐻 for 𝑛 − 𝑛√
2 − 1 iterations.;

5 Let 𝐻 be the resulting multigraph.;
6 𝑆1 ←− KS-Algorithm(H);
7 𝑆2 ←− KS-Algorithm(H);
8 return argmin{|𝑆𝑖 | : 𝑖 ∈ [2]}

Let 𝑝 (𝑛) the probability of success for KS-Algorithm for a graph with 𝑛 vertices. Then probability of not picking
an edge until 𝑛√

2 + 1 nodes remain is ≥ 1
2 as we have calculated above. Now the resulting graph has 𝑛√

2 + 1 nodes. Hence,

probability that KS-Algorithm(H) returns the min-cut is at least 1
2𝑝

(
𝑛√
2 + 1

)
. Therefore,

P[At least one of the run KS-Algorithm(H) returns the min cut] ≥ 1 −
(
1 − 1

2𝑝
(
𝑛
√
2
+ 1

))2
Therefore we have

𝑝 (𝑛) ≥ 1 −
(
1 − 1

2𝑝
(
𝑛
√
2
+ 1

))2
Solving this recursion relation we have 𝑝 (𝑛) ≥ 1

log𝑛 . Hence, to succeed with high probability we need to run 2 log2 𝑛
times.

Now For each run of the KS-Algorithm we have the recursion relation

𝑇 (𝑛) ≥ 2𝑇
(
𝑛
√
2
+ 1

)
+𝑂 (𝑛2)

Solving the recursion relation we have 𝑇 (𝑛) = 𝑂 (𝑛2 log𝑛). Therefore, the time complexity of the total running time is
𝑂 (𝑛2 log3 𝑛).

Chapter 13
Matching

In section 5.1 we saw how to find a maximal matching in a graph using matroids. Here we will try to find maximum
matching.

Maximum Matching
Input: Graph 𝐺 = (𝑉 ,𝐸)
Question: Find a maximum matching𝑀 ⊆ 𝐸 of 𝐺

First we will solve finding maximum matching in bipartite graphs first. Then we will extend the algorithm to
general graphs.

13.1 Bipartite Matching

So in this section we will study the following problem:

Bipartite Maximum Matching
Input: Graph 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Question: Find a maximum matching𝑀 ⊆ 𝐸 of 𝐺

13.1.1 Using Max Flow

One approach to find a maximum matching is by using max-flow algorithm. For this we introduce 2 new vertices 𝑠 and
𝑡 where there is an edge from 𝑠 to every vertex in 𝐿 and there is an edge from every vertex in 𝑅 to 𝑡 and all edges have
capacity 1. Then the max-flow for this directed graph is the maximum matching of the bipartite graph. So we have the
algorithm:

Lemma 13.1.1
There exists a max-flow of value 𝑘 in the modified graph 𝐺 ′ = (𝑉 ,𝐸′) if and only there is a matching of size 𝑘

Proof: Suppose 𝐺 ′ has a matching𝑀 of size 𝑘 . Let𝑀 = {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ [𝑘]} where 𝑢𝑖 ∈ 𝐿 and 𝑣𝑖 ∈ 𝑅 for all 𝑖 ∈ [𝑘]. Then
we have the flow 𝑓 , 𝑓 (𝑠 ,𝑢𝑖) = 𝑓 (𝑢𝑖 , 𝑣𝑖) = 𝑓 (𝑣𝑖 , 𝑡) = 1 for all 𝑖 ∈ [𝑘]. This flow has value 𝑘 .

Now suppose there is a flow 𝑓 of value 𝑘 . Since each edge has capacity 1 then either an edge has flow 1 or it has
0 flow. Since value of flow is 𝑘 there are exactly 𝑘 edges outgoing from 𝑠 with positive flow. Let the edges are (𝑠 ,𝑢𝑖) for
𝑖 ∈ [𝑘]. Now from each 𝑢𝑖 there is exactly one edge going out which has positive flow. Now if ∃ 𝑖 ≠ 𝑗 ∈ [𝑘] such that
∃ 𝑣 ∈ 𝑅, 𝑓 (𝑢𝑖 , 𝑣) = (𝑢 𝑗 , 𝑣) = 1 then 𝑓 (𝑣 , 𝑡) = 2 but 𝑐𝑣,𝑡 = 1. So this is not possible. Therefore, the edges going out from
each 𝑢𝑖 goes to distinct vertices. These edges now form a matching of size 𝑘 . ■

Therefore, the algorithm successfully returns a maximum matching of the bipartite graph. But we don’t know any
algorithm for finding maximum matching in general graphs using max-flow. In the next algorithm we will use something
called Augmenting paths to find a maximum matching which we will extend to general graphs.

13.1 Bipartite Matching Page 82

Algorithm 48: BP-Max-Matching-Flow
Input: 𝐺 = (𝐿 ∪ 𝑅,𝐸) bipartite graph
Output: Find a maximum matching

1 begin

2 𝑉 ←− 𝐴 ∪ 𝐵 ∪ {𝑠 , 𝑡}
3 𝐸′ ←− 𝐸
4 for 𝑣 ∈ 𝐿 do

5 𝐸′ ←− 𝐸′ ∪ {(𝑠 , 𝑣)}
6 for 𝑣 ∈ 𝑅 do

7 𝐸′ ←− 𝐸′ ∪ {(𝑣 , 𝑡)}
8 for 𝑒 ∈ 𝐸′ do
9 𝑐𝑒 ←− 1

10 𝑓 ←− Edmonds-Karp(𝐺 ′ = (𝑉 ,𝐸′), {𝑐𝑒 : 𝑒 ∈ 𝐸′})
11 return {𝑒 : 𝑓 (𝑒) > 0, 𝑒 ∈ 𝐸}

13.1.2 Using Augmenting Paths

Definition 13.1.1:𝑀-Alternating Path and Augmenting Path

In a graph𝐺 = (𝑉 ,𝐸) and𝑀 be a matching in𝐺 . Then an𝑀-alternating path is where the edges from𝑀 and 𝐸 \𝑀
appear alternatively.

An𝑀-alternating path between two unmatched (also called exposed) vertices is called an augmenting path.

Given a matching 𝑀 and if there exists an augmenting path 𝑝 then we can obtain a larger matching 𝑀 ′ just by
taking the edges in 𝑝 not in 𝑀 . Now suppose we are given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅,𝐸). Let 𝑀 is a matching in 𝐺 .
Suppose 𝑀 is a maximum matching. If there exists an augmenting path 𝑝 then we can obtain a larger matching just by
taking the edges in 𝑝 not in𝑀 . This contradicts with𝑀 is maximum matching. Hence, there are no augmenting paths.

Now we will show that given 𝐺 and 𝑀 which is not maximum then we can find an augmenting path with an
algorithm. Since𝑀 is not maximum there is a vertex 𝑣 which is not matched

Algorithm 49: Find-Augmenting-Path(𝐺 , 𝑣)
Input: 𝐺 = (𝐿 ∪ 𝑅,𝐸) bipartite graph, matching𝑀

(not maximum) and an exposed vertex 𝑣
Output: Find an augmenting path starting from 𝑣

1 begin

2 𝑣 .mark←− even

3 for 𝑢 ∈ 𝐿 ∪ 𝑅 \ {𝑣} do
4 𝑢.mark←− Null
5 Queue 𝑄 // For BFS
6 Enqeue(𝑄 , 𝑣)
7 while 𝑄 not empty do

8 AUTree(𝑄)
9 return Fail

Algorithm 50: AUTree(𝑄)
1 𝑢 ←− Deqeue(𝑄)
2 if 𝑢.mark == even then

3 for (𝑢,𝑤) ∈ 𝐸 \𝑀 do

4 if 𝑤 .mark == Null then

5 Enqeue(𝑄 ,𝑤)
6 𝑤 .mark←− odd

7 𝑤 .𝑝 ←− 𝑢

8 if 𝑢.mark == odd then

9 if ∃ (𝑢,𝑤) ∈ 𝑀 and𝑤 .mark == Null then

10 𝑤 .𝑚𝑎𝑟𝑘 ←− even

11 𝑤 .𝑝 ←− 𝑢
12 Enqeue(𝑄 ,𝑤)
13 else

14 Print “𝑣 ⇝ 𝑢 augmenting path found”

Page 83 Chapter 13 Matching

𝑣

even even even evenodd odd odd odd

𝑢

The above algorithm in each iteration checks if the new vertex has mark Null before adding to the queue. Because
of this we are not adding same vertex more than one into the queue and if we follow the parent and child pointers, this
forms a tree. We call this tree to be an𝑀-alternating tree. Denote the tree by 𝑇 .

Note:-

𝑣

𝑋

The algorithm may not visit all the vertices in 𝐿 ∪ 𝑅 in the tree. For example in case of the
graph at left the algorithm will not find the vertex

Since the algorithm runs a BFS if there was an edge between two vertices at levels separated by 2 we would have
explored that vertex earlier. So our first observation is:

Observation 13.1. In the tree 𝑇 there are no edges between vertices at levels separated by 2.

Observation 13.2. All even vertices except 𝑣 are matched in 𝑇 .

Observation 13.3. There are no edges between two odd levels or even levels.

Lemma 13.1.2
If leaf 𝑢 is odd there is a 𝑣 ⇝ 𝑢 augmenting path.

Proof: If the odd vertex 𝑢 is unmatched then clearly there is a 𝑣 ⇝ 𝑢 augmenting path. So let’s assume 𝑢 is matched.
Say (𝑢,𝑤) ∈ 𝑀 . If𝑤 is not in 𝑇 then 𝑢 can not be a leaf as the algorithm will take the edge (𝑢,𝑤) ∈ 𝑀 for next iteration.

So suppose𝑤 is in 𝑇 . Then𝑤 .mark = even since otherwise we would have taken then (𝑤 ,𝑢) edge in 𝑇 before. But
by Observation 13.2 all the even vertices except 𝑣 are matched in the tree already. So 𝑢 can not be matched with𝑤 ■

Now from the tree 𝑇 we partition the vertices of 𝑇 into the even marked vertices and odd marked vertices. So let
𝐿𝑇 = 𝐿 ∩𝑇 and 𝑅𝑇 = 𝑅 ∩𝑇 . Therefore, 𝐿𝑇 is the set of even marked vertices and 𝑅𝑇 is the set of odd marked vertices.

Lemma 13.1.3
𝑁 (𝐿𝑇) = 𝑅𝑇

Proof: Vertices in 𝐿𝑇 are even vertices from which we explore all the edges not in𝑀 . Also, all the even vertices except
𝑣 are matched. So except 𝑣 for all the vertices in 𝐿𝑇 their parent is the matched vertex. Hence, for all even vertices except
𝑣 all the neighbors are in 𝑅𝑇 . Since 𝑣 is exposed 𝑣 has no matched neighbor. So all the neighbors of 𝑣 are also in 𝑅𝑇 .
Therefore, 𝑁 (𝐿𝑇) = 𝑅𝑇 . ■

13.1 Bipartite Matching Page 84

Lemma 13.1.4
Suppose we start the algorithm from an exposed vertex 𝑣 . Suppose there is no augmenting path from 𝑣 and let the
tree formed by the algorithm is 𝑇 . Then |𝐿𝑇 | = |𝑅𝑇 | + 1.

Proof: Since there is no augmenting path the graph all the leaves of 𝑇 are even vertices. Otherwise, the leaves are odd
vertices and then all of them have to be matched. If not then there will exists an augmenting path. Therefore, all the leaves
of𝑇 are even vertices. Now since the vertices in 𝐿𝑇 are even vertices and all even vertices except 𝑣 are matched to unique
odd vertex in 𝑅𝑇 we have |𝐿𝑇 | = |𝑅𝑇 | + 1. ■

Now suppose 𝑀 is a matching. Let 𝐿′ = {𝑣1, . . . , 𝑣𝑘 } ⊆ 𝐿 are unmatched vertices. Therefore, |𝑀 | = |𝐿 | − 𝑘 . Then
consider the following algorithm:

• Let 𝑇1 be𝑀-alternating tree from 𝑣1 by Find-Augmenting-Path(𝐺 , 𝑣1). 𝐿𝑇1 ,𝑅𝑇1 are vertices of 𝑇1.

• Let 𝑇2 be𝑀-alternating tree from 𝑣2 by Find-Augmenting-Path(𝐺 \𝑇1, 𝑣2). 𝐿𝑇2 ,𝑅𝑇2 are vertices of 𝑇2.

• Let 𝑇3 be𝑀-alternating tree from 𝑣3 by Find-Augmenting-Path(𝐺 \ (𝑇1 ∪𝑇2), 𝑣3). 𝐿𝑇3 ,𝑅𝑇3 are vertices of 𝑇3. · · ·

• Let 𝑇𝑘 be𝑀-alternating tree from 𝑣𝑘 by Find-Augmenting-Path
(
𝐺 \

(
𝑘−1⋃
𝑖=1
𝑇𝑖

)
, 𝑣𝑘

)
. 𝐿𝑇𝑘 ,𝑅𝑇𝑘 are vertices of 𝑇𝑘 .

Observation 13.4. 𝑣𝑖 is not in 𝑇𝑗 for any 𝑗 < 𝑖 because otherwise we would have found an augmenting path in 𝑇𝑗 .

Now 𝐿𝑇𝑖 for all 𝑖 ∈ [𝑘] are disjoint and 𝑅𝑇𝑖 for all 𝑖 ∈ [𝑘] are disjoint. If 𝐺 had no augmenting path from 𝑣𝑖 for all

𝑖 ∈ [𝑘] then there are no augmenting paths in 𝐺 \
(
𝑗⋃
𝑖=1
𝑇𝑖

)
for all 𝑗 ∈ [𝑘 − 1] from 𝑣 𝑗+1. Therefore, by Lemma 13.1.4 we

have |𝐿𝑇𝑖 | = |𝑅𝑇𝑖 | + 1 ∀ 𝑖 ∈ [𝑘]. Hence, we have

𝑘∑︁
𝑖=1
|𝐿𝑇𝑖 | =

𝐾∑︁
𝑖=1
(|𝑅𝑇𝑖 | + 1) =⇒

����� 𝑘⋃
𝑖=1

𝐿𝑇𝑖

����� =
����� 𝑘⋃
𝑖=1

𝑅𝑇𝑖

����� + 𝑘
Now by Lemma 13.1.3, 𝑁 (𝐿𝑇𝑗+1) = 𝑅𝑇𝑗+1 for all 𝑗 ∈ [𝑘 − 1] in 𝐺 \

(
𝑗⋃
𝑖=1
𝑇𝑖

)
. Hence,

𝑁 (𝐿𝑇𝑗) ⊆
𝑗⋃
𝑖=1

𝑅𝑇𝑖 =⇒ 𝑁

(
𝑘⋃
𝑖=1

𝐿𝑇𝑖

)
=

𝑘⋃
𝑖=1

𝑅𝑇𝑖

But
���� 𝑘⋃
𝑖=1
𝐿𝑇𝑖

���� = ���� 𝑘⋃
𝑖=1
𝑅𝑇𝑖

���� +𝑘 . Therefore, any matching of
𝑘⋃
𝑖=1
𝐿𝑇𝑖 must leave at least 𝑘 vertices unmatched. Now all the vertices

in 𝐿 \
(
𝑘⋃
𝑖=1
𝐿𝑇𝑖

)
with 𝑅 \

(
𝑘⋃
𝑖=1
𝑅𝑇𝑖

)
and vice versa. Therefore, any matching of 𝐿 must leave at least 𝑘 vertices unmatched.

Since 𝑀 is a matching such that exactly 𝑘 vertices are unmatched. 𝑀 is a maximum matching. Therefore, if there is no
augmenting path in 𝐺 then𝑀 is a maximum matching.

We also showed before that if 𝑀 is a maximum matching then there is no augmenting path in 𝐺 . Therefore, we
have the following theorem:

Theorem 13.1.5 Berge’s Theorem

A matching𝑀 is maximum if and only if there are no augmenting paths in 𝐺 .

Therefore, if we start with any matching and each time we find an augmenting path we update the matching by
taking the odd edges in the augmenting path and obtain a larger matching. After continuously doing this once when there
is no augmenting path we can conclude that we obtained a maximum matching.

Since every time the size of the maximal matching is increased by at least 1. The total number of iterations the
algorithm takes to output the maximal matching is 𝑂 (𝑛) where 𝑛 is the number of vertices in 𝐺 . In each iteration it calls
the Find-Augmenting-Path algorithm which takes the time same as time taken in BFS. Hence, Find-Augmenting-Path
takes 𝑂 (𝑚 +𝑛) time. Therefore, the BP-Maximum-Matching algorithm takes 𝑂 (𝑛(𝑛 +𝑚)) time.

Page 85 Chapter 13 Matching

Algorithm 51: BP-Maximum-Matching(𝐺)
Input: 𝐺 = (𝐿 ∪ 𝑅,𝐸) bipartite graph
Output: Find a maximum matching

1 begin

2 𝑀 ←− ∅
3 while True do

4 𝑣 ←− unmatched vertex
5 𝑝 ←− Find-Augmenting-Path
6 if 𝑝 == Fail then

7 return𝑀

8 for 𝑒 ∈ 𝑝 do

9 if 𝑒 ∈ 𝑀 then

10 𝑀 ←− 𝑀 \ {𝑒}
11 else

12 𝑀 ←− 𝑀 ∪ {𝑒}

13.1.3 Using Matrix Scaling

Here we will show a new algorithm for deciding if a bipartite graph has a perfect matching using matrix scaling. The
paper which we will follow is [LSW98]

Bipartite Perfect Matching
Input: Graph 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Question: Decide if 𝐺 has a perfect matching or not.

Suppose 𝐺 = (𝐿 ∪ 𝑅,𝐸) a bipartite graph. If bipartite adjacency matrix of the graph 𝐺 is 𝐴 then the permanent of
the matrix 𝐴,

𝑝𝑒𝑟 (𝐴) =
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

𝑥𝑖 ,𝜎 (𝑖)

counts the number of perfect matchings in𝐺 . So we want to check if for a given bipartite graph (𝐿 ∪𝑅,𝐸), 𝑝𝑒𝑟 (𝐴) > 0 or
not where 𝐴 is the bipartite adjacency matrix. Now there is a necessary and sufficient condition for existence of perfect
matching in a bipartite graph which is called Hall’s condition.

Theorem 13.1.6 Hall’s Condition

A bipartite graph𝐺 = (𝐿 ∪ 𝑅,𝐸) has an 𝐿-perfect matching if and only if ∀ 𝑆 ⊆ 𝐿, |𝑆 | ≤ |𝑁 (𝑆) | where 𝑁 (𝑆) = {𝑣 ∈
𝑅 : ∃ 𝑢 ∈ 𝐿, (𝑢, 𝑣) ∈ 𝐸}

Proof: Now if 𝐺 has an 𝐿-perfect matching then for every 𝑆 ⊆ 𝐿, 𝑆 is matched with some 𝑇 ⊆ 𝑅 such that |𝑆 | = |𝑇 |.
Therefore, 𝑇 ⊆ 𝑁 (𝑆) =⇒ |𝑆 | = |𝑇 | ≤ |𝑁 (𝑆) |.

Nowwewill prove the opposite direction. Suppose for all 𝑆 ⊆ 𝐿 we have |𝑆 | ≤ |𝑁 (𝑆) |. Assume there is no 𝐿-perfect
matching in 𝐺 . Let𝑀 be a maximum 𝐿-matching in 𝐺 . Let 𝑢 ∈ 𝐿 is unmatched. Now consider the following sets:

𝑋 = {𝑥 ∈ 𝐿 : ∃ 𝑀-alternating path from 𝑢 to 𝑥}, 𝑌 = {𝑦 ∈ 𝑅 : ∃ 𝑀-alternating path from 𝑢 to 𝑦}

Now notice that 𝑁 (𝑋) ⊆ 𝑌 . Since in a𝑀-alternating path from 𝑢 whenever the odd edges are not matching edges and the
even edges are matching edges. So in the odd edges we can pick any neighbor except the one it is matched with and the
immediate even edge before that connects that vertex with the vertex in 𝑅 it is matched with. Hence, we have 𝑁 (𝑋) ⊆ 𝑌 .

Now it suffices to prove that |𝑋 | > |𝑌 |. Now let 𝑦 ∈ 𝑌 . Suppose 𝑢 ⇝ 𝑥 ′ → 𝑦 be the 𝑀-alternating path. If 𝑦 is
not matched then we could increase the matching by taking the odd edges of the path and thus obtain a matching with
larger size than 𝑀 . But 𝑀 is maximum matching. Hence, 𝑦 is matched. Therefore, we can extend the path by taking the
matching edge incident on 𝑦 and go the vertex 𝑥 ′′ ∈ 𝐿 i.e. the new 𝑀-alternating path becomes 𝑢 ⇝ 𝑥 ′ → 𝑦 → 𝑥 ′′ to
have an𝑀-alternating path 𝑢 ⇝ 𝑥 ′′. So |𝑋 | > |𝑌 |.

Therefore, we obtained a set of vertices 𝑋 ⊆ 𝑌 such that |𝑋 | > |𝑌 | ≥ 𝑁 (𝑋) |. This contradicts the assumption.
Hence, contradiction. Therefore, 𝐺 has an 𝐿-perfect matching. ■

13.1 Bipartite Matching Page 86

We will use hall’s condition on the adjacency matrix to check if 𝑝𝑒𝑟 (𝐴) is positive or not. Now multiplying a row
or a column of a matrix by some constant 𝑐 also multiplies the permanent of the matrix by 𝑐 as well. In fact if 𝑑1,𝑑2 ∈ R𝑛

+

and 𝐷1 = 𝑑𝑖𝑎𝑔(𝑑1) and 𝐷2 = 𝑑𝑖𝑎𝑔(𝐷2) then 𝑝𝑒𝑟 (𝐷1𝐴𝐷2) =
(
𝑛∏
𝑖=1
𝑑1𝑖

) (
𝑛∏
𝑖=1
𝑑2𝑖

)
𝑝𝑒𝑟 (𝐴). So we can scale our original matrix 𝐴

to obtain a different matrix 𝐵 and from 𝐵 we can approximate 𝑝𝑒𝑟 (𝐴) by approximating 𝑝𝑒𝑟 (𝐵). A natural strategy is to
seek an efficient algorithm for scaling 𝐴 to a doubly stochastic 𝐵.

Definition 13.1.2: Doubly Stochastic Matrix

A matrix𝑀 ∈ R𝑚×𝑚 is doubly stochastic if entries are non-negative and each row and column sum to 1.

First we will show that Hall’s Condition holds for doubly stochastic matrix. First let’s see what it means for a
matrix to satisfy hall’s condition. A matrix with all entries non-negative holds Hall’s Condition if for all 𝑆 ⊆ [𝑛] if
𝑇 = {𝑖 ∈ [𝑛] : ∃ 𝑗 ∈ 𝑆 , 𝐴(𝑖 , 𝑗) ≠ 0} then |𝑇 | ≥ |𝑆 |. This also corresponds to the bipartite adjacency matrix satisfying the
hall’s condition since for any set of rows 𝑆 the number of columns for which in the 𝑆 rows at least one entry is non-zero
should be greater than or equal to |𝑆 |.

Lemma 13.1.7
Hall’s Condition holds for doubly stochastic matrix.

Proof: Let 𝑀 be the doubly stochastic matrix. Let 𝑆 ⊆ [𝑛]. So consider the |𝑆 | × 𝑛 matrix which only consists of the
rows in 𝑆 . Call this matrix𝑀𝑟

𝑆
. Now suppose 𝑇 be the set of columns in𝑀𝑟

𝑆
which has nonzero entries. Now consider the

𝑛 × |𝑇 | matrix which only consists of the columns in 𝑇 . Call this matrix 𝑀𝑐
𝑇
. Now since 𝑀 is doubly stochastic we know

sum of entries of 𝑀𝑟
𝑆
is |𝑆 | and sum of entries of 𝑀𝑐

𝑇
is |𝑇 |. Our goal is to show |𝑆 | ≤ |𝑇 |. Now since 𝑇 is the only set

of columns which have nonzero columns in 𝑀𝑟
𝑆
the elements which contributes to the sum of entries in 𝑀𝑟

𝑆
are in the 𝑇

columns in𝑀𝑟
𝑆
. Since these elements are also present in𝑀𝑐

𝑇
we have |𝑇 | ≥ |𝑆 |. ■

Hence, for doubly stochastic matrices the permanent is positive. Now not all matrices are doubly stochastic. And
in fact matrices with permanent zero will not be doubly stochastic, so no amount of scaling will make it doubly stochastic.
So we will settle for approximately doubly stochastic matrix. In order to make a matrix doubly stochastic first for each
row we will divide the row with their row some. Now it becomes row stochastic. Then if it’s not approximately doubly
stochastic for each column we will divide the column entries with their column sum. But first what 𝜖-approximate doubly
stochastic matrix means.

Definition 13.1.3: 𝜖−Approximate Doubly Stochastic Matrix

A matrix is 𝜖−approximate doubly stochastic if for each column, the column sum is in (1 − 𝜖 , 1 + 𝜖) and for each
row, the row sum is in (1 − 𝜖 , 1 + 𝜖)

Now we will show that even for 𝜖-approximate doubly stochastic matrix the hall’s condition holds.

Lemma 13.1.8
Halls’s Condition holds for 𝜖-approximate doubly stochastic matrix for 𝜖 < 1

10𝑛

Proof: Let𝑀 is 𝜖−approximate doubly stochastic matrix. Let 𝑆 ⊆ [𝑛]. So consider the |𝑆 | ×𝑛matrix which only consists
of the rows in 𝑆 . Call this matrix𝑀𝑟

𝑆
. Now suppose𝑇 be the set of columns in𝑀𝑟

𝑆
which has nonzero entries. Now consider

the𝑛× |𝑇 |matrix which only consists of the columns in𝑇 . Call this matrix𝑀𝑐
𝑇
. Now the sum of entries in𝑀𝑟

𝑆
is ≥ |𝑆 | (1−𝜖)

and sum of entries in 𝑀𝑐
𝑇
is ≤ |𝑇 | (1 − 𝜖). Now since 𝑇 is the only set of columns which have nonzero columns in 𝑀𝑟

𝑆
the

elements which contributes to the sum of entries in𝑀𝑟
𝑆
are in the𝑇 columns in𝑀𝑟

𝑆
. Since these elements are also present

in𝑀𝑐
𝑇
we have | |𝑇 | (1 + 𝜖) ≥ |𝑆 | (1 − 𝜖). Therefore we have

|𝑇 | ≥ |𝑆 | 1 − 𝜖1 + 𝜖 = |𝑆 |
(
1 − 2𝜖

1 + 𝜖

)
≥ |𝑆 | (1 − 2𝜖) > |𝑆 |

(
1 − 1

5𝑛

)
≥ |𝑆 |

(
1 − 1
|𝑆 |

)
> |𝑆 | − 1

Since 𝑇 is an integer we have |𝑇 | ≥ |𝑆 |. Hence the Hall’s condition holds. ■

Page 87 Chapter 13 Matching

Therefore, permanent of 𝜖-approximate doubly stochastic matrix is also positive. Hence, our algorithm for bipartite
perfect matching is:

Algorithm 52: BP-Matrix-Scaling
Input: Bipartite adjacency matrix 𝐴 of 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Output: Decide if 𝐺 has a perfect matching.

1 begin

2 while True do

3 𝐴←− Scale every row of 𝐴 to make it row stochastic.
4 if All column-sums are in (1 − 𝜖 , 1 + 𝜖) then
5 return Yes

6 𝐴←− Scale every column of 𝐴 to make it column stochastic.
7 if All row-sums are in (1 − 𝜖 , 1 + 𝜖) then
8 return Yes

In both if conditions we are checking if the matrix is 𝜖−approximate doubly stochastic matrix. The moment it
becomes a 𝜖−approximate doubly stochastic matrix we are done.

Now if𝐺 doesn’t have a perfect matching then we will never reach a 𝜖-approximate doubly stochastic matrix since
otherwise Hall’s condition will hold, and then we will have that the permanent is positive. So if 𝐺 doesn’t have a perfect
matching the algorithm will run in an infinite loop. We only need to check if 𝐺 has a perfect matching the algorithm
returns Yes.

We will now define a potential function Φ : Z0 → R+. Let 𝜎 ∈ 𝑆𝑛 such that 𝑎𝑖 ,𝜎 (𝑖) ≠ 0 for all 𝑖 ∈ [𝑛]. Now if an
entry of the matrix is nonzero then it is always nonzero since all the entries are non-negative. Now since the scalings are
symmetric we will define the potential function for 𝑖𝑡ℎ scaling (row/column) is Φ(𝑖) =

𝑛∏
𝑖=1
𝑎𝑖 ,𝜎 (𝑖) . So we have Φ(0) = 1

since at first all the entries of the matrix are from {0, 1}. Also, we know Φ(𝑡) ≤ 1 for all 𝑡 since every time we are scaling
the matrix. Now Φ(1) ≥ 1

𝑛𝑛
since every row-sum can be at most 𝑛 so it will be divided by 𝑛 and therefore 𝑎𝑖 ,𝜎 (𝑖) ≥ 1

𝑛

for all 𝑖 ∈ [𝑛]. Now to show the while loop stops if 𝐺 has a perfect matching it suffices to show that Φ(𝑡) increases by a
multiplicative factor. So we have the following lemma.

Lemma 13.1.9
For all 𝑡 , Φ(𝑡 + 1) ≥ Φ(𝑡) (1 + 𝛼) for some 𝛼 ∈ (0, 1).

Proof: Let 𝐴′ denote the matrix at the 𝑡𝑡ℎ scaling where the (𝑡 − 1)𝑡ℎ scaling was column-scaling. Let 𝐴′′ denote the
matrix after row-scaling. Now since we went to the next iteration not all column-sums are in (1 − 𝜖 , 1 + 𝜖) after scaling
the rows. Now the row sums of 𝐴′′ are 1. Therefore we have

Φ(𝑡)
Φ(𝑡 + 1) =

𝑛∏
𝑖=1

Col-sum𝑖 (𝐴′′) ≤
©­­­«
𝑛∑
𝑖=1

Col-sum𝑖 (𝐴′′)

𝑛

ª®®®¬
𝑛

=

©­­­«
𝑛∑
𝑖=1

Row-sum𝑖 (𝐴′′)

𝑛

ª®®®¬
𝑛

= 1 =⇒ Φ(𝑡) ≤ Φ(𝑡 + 1)

Similarly we can say the same if (𝑡 − 1)𝑡ℎ scaling was row-scaling. Since not all column-sums are in (1− 𝜖 , 1 + 𝜖) we have
𝑛∑
𝑖=1
(Col-sum𝑖 (𝐴′′) − 1)2 ≥ 𝜖2. Therefore using Lemma 13.1.10 we have

Φ(𝑡)
Φ(𝑡 + 1) ≤ 1 − 𝜖

2

2 =⇒ Φ(𝑡 + 1) ≥
(
1 + 𝜖

2

2

)
Φ(𝑡)

Therefore we have the lemma. ■

We have 𝜖 < 1
10𝑛 . Therefore, if 𝑡 ≥ 200𝑛4 then we have

1 ≥ Φ(𝑡) ≥ 1
𝑛𝑛

(
1 + 1

200𝑛2

)𝑡
≥ 1
𝑛𝑛
𝑒𝑛

2
> 1

13.2 Matching in General Graphs Page 88

Hence the while loop will iterate for at most 200𝑛4 iterations. Hence, this algorithm takes 𝑂 (𝑛4) time. Hence, if 𝐺 has a
perfect matching the algorithm runs for at most𝑂 (𝑛4) iterations. And if𝐺 doesn’t have a perfect matching then the loop
never stops. So we have the new modified algorithm to prevent infinite looping:

Algorithm 53: BP-Matrix-Scaling
Input: Bipartite adjacency matrix 𝐴 of 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Output: Decide if 𝐺 has a perfect matching.

1 begin

2 𝜖 ←− 1
20𝑛

3 for 𝑖 ∈ [200𝑛4] do
4 𝐴←− Scale every row of 𝐴 to make it row stochastic.
5 if All column-sums are in (1 − 𝜖 , 1 + 𝜖) then
6 return Yes

7 𝐴←− Scale every column of 𝐴 to make it column stochastic.
8 if All row-sums are in (1 − 𝜖 , 1 + 𝜖) then
9 return Yes

We will prove the helping lemma needed to prove Lemma 13.1.9.

Lemma 13.1.10

Suppose 𝑥1, . . . ,𝑥𝑛 ≥ 0 and
𝑛∑
𝑖=1
𝑥𝑖 = 𝑛 and

𝑛∑
𝑖=1
(1 − 𝑥𝑖)2 ≥ 𝛿 . Then

𝑛∏
𝑖=1
𝑥𝑖 ≤ 1 − 𝛿

2 + 𝑜 (𝛿).

Proof: Denote 𝜌𝑖 = 𝑥𝑖 − 1. So
𝑛∑
𝑖=1
𝜌𝑖 = 0 and

𝑛∑
𝑖=1
𝜌2 ≥ 𝛿 . Now

log(1 + 𝜌𝑖) =
∞∑︁
𝑗=1
(−1) 𝑗−1

𝜌
𝑗

𝑖

𝑗
=⇒ log(1 + 𝜌𝑖) ≤ 𝜌𝑖 −

𝜌2𝑖
3 +

𝜌3𝑖
3 =⇒ 1 + 𝜌𝑖 ≤ 𝑒𝜌𝑖−

𝜌2
𝑖
3 +

𝜌3
𝑖
3

Therefore we have

𝑛∏
𝑖=1

𝑥𝑖 ≤ exp
[
𝑛∑︁
𝑖=1

𝜌𝑖 −
𝑛∑︁
𝑖=1

𝜌2𝑖
3 +

𝑛∑︁
𝑖=1

𝜌3𝑖
3

]
≤ exp


0 − 𝛿2 +

(
𝑛∑
𝑖=1
𝜌2𝑖

) 3
2

3


= exp

[
−𝛿2 +

𝛿
3
2

3

]
≤ 1 − 𝛿2 + 𝑜 (𝛿)

Therefore we have the lemma. ■

There is also a survey, [Ide16] on use of matrix scaling in different results.

13.2 Matching in General Graphs

Here we give a similar algorithm1 for finding maximum matching in general graph as in the case of bipartite graphs in
subsection 13.1.2. We will give a similar characterization for the maximummatching in general graphs. First we will show
an extension of Berge’s lemma to general graphs.

Theorem 13.2.1 Berge’s Lemma

For any graph 𝐺 = (𝑉 ,𝐸),𝑀 ⊆ 𝐸 is a maximal matching if and only if there is no augmenting paths in 𝐺 .

1I learned this algorithm in both Algorithm course by Umang and Combinatorial Optimization course by Kavitha. So I am mixing their notes here.

Page 89 Chapter 13 Matching

Proof: Suppose𝑀 is a maximal matching. Then if𝐺 has an augmenting path 𝑝 . Then we can just take the odd edges in
𝑝 and then replace the edges in𝑀 ∩ 𝑝 with those edges i.e. 𝑀△𝑝 and this is a larger matching than𝑀 . But this contradicts
the maximum property of𝑀 . Hence, 𝐺 has no augmenting paths.

Now we will show that if 𝑀 is not a maximum matching then 𝐺 has an augmenting path. So suppose 𝑀 is not
a maximum matching. Let 𝑀 ′ is a maximum matching. Then consider the graph 𝐺 ′ = (𝑉 ,𝐸′) where 𝐸′ = 𝑀△𝑀 ′. Now
every vertex in 𝑉 has degree ∈ {0, 1, 2} in 𝐺 ′. Hence, the connected components of 𝐺 ′ are isolated vertices, paths and
cycles. In a path or cycle the edges of 𝑀 and 𝑀 ′ not in both appear alternatively. Therefore, the cycles are even cycles.
Since |𝑀 ′ | > |𝑀 | there exists a path 𝑝 such that number |𝑝 ∩𝑀 ′ | > |𝑝 ∩𝑀 |. Therefore, the starting and ending edge of 𝑝
are in𝑀 ′. Hence, 𝑝 is an augmenting path in 𝐺 . ■

13.2.1 Flowers and Blossoms

By the above theorem like in the case of bipartite graphs we will search for augmenting paths in𝐺 for matching𝑀 and if
we can find an augmenting path 𝑝 we will update the matching by taking 𝑀 ′ = 𝑀△𝑝 and obtain a larger matching. But
unlike bipartite graphs we can not run the same algorithm for finding augmenting paths as there can be edges between two
odd layers or two even layers. So in the𝑀-alternating tree there can be odd cycles, but these odd cycles have all vertices
except one vertex are matched using edges of the cycle. So we look for these special structures in the 𝑀-alternating tree
called blossom and flower.

Definition 13.2.1: Flower and Blossom

For a matching 𝑀 a flower consists of an even 𝑀-alternating path 𝑃 from
an exposed vertex𝑢 to vertex 𝑣 , called the stem and an odd cycle containing
𝑣 in which the edges alternate between in and out of the matching except
for the two edges incident to 𝑣 . This odd cycle is called the blossom.

𝑢 𝑣

stem
base

blossom

Observation 13.5. For a flower since the stem is an even augmenting path the base of the blossom is even as well ass all the

other vertices of the blossom are even.

Since blossoms are in the way of getting augmenting paths we want to remove the blossoms from the graph.

13.2.2 Shrinking Blossoms

In order to remove the blossoms from the graph we will shrink the blossoms into a single vertex every time we encounter
a blossom while constructing the augmenting tree.

Question 13.1

How to shrink a blossom into a single vertex?

Let 𝐵 be a blossom in 𝐺 . Then the new graph is 𝐺/𝐵 = (𝑉 ′,𝐸′) where

𝑉 ′ = (𝑉 \ 𝐵) ∪ {𝑣𝑏}, 𝐸′ =
(
𝐸 \ {(𝑢, 𝑣) : 𝑢 ∈ 𝐵 or 𝑣 ∈ 𝐵}

)
∪ {(𝑢, 𝑣𝑏) : 𝑢 ∉ 𝐵, 𝑣 ∈ 𝐵, (𝑢, 𝑣) ∈ 𝐸}

So if 𝑀 is a matching in 𝐺 then we can also a get a matching 𝑀/𝐵 in 𝐺/𝐵 from 𝑀 after shrinking 𝐵 into a single vertex
where𝑀/𝐵 = 𝑀 \ {Matching edges in 𝐵}.

Theorem 13.2.2
Let 𝐵 be a blossom wrt𝑀 . 𝑀 is a maximum matching in 𝐺 if and only if𝑀/𝐵 is a maximum matching in 𝐺/𝐵.

Proof: (=⇒) : Suppose𝑀/𝐵 is not maximum matching in𝐺/𝐵. Let 𝑁 is a matching in𝐺/𝐵 larger than𝑀/𝐵. Now if 𝑁
has no edge incident to 𝑣𝑏 then 𝑁 is also a matching in 𝐵. Let 𝑁 ′ is the matching in𝐺 . If there is an edge (𝑢, 𝑣𝑏) incident
on 𝑣𝑏 in 𝑁 then we can expand the blossom 𝐵 and get the matching where the base of 𝐵 is matched with 𝑢 and other

13.2 Matching in General Graphs Page 90

vertices of 𝐵 are matched inside 𝐵. So we have the matching 𝑁 ′ = (𝑁 \ {𝑒}) ∪ {(𝑢,𝑤)} where𝑤 in 𝐵 connected to 𝑢 in𝐺 .
Since |𝑁 ′ | = |𝑁 | > |𝑀/𝐵 | and 𝐵 has |𝐵 |−12 matching edges we have |𝑁 | + |𝐵 |−12 > |𝑀/𝐵 | + |𝐵 |−12 = |𝑀 |. But𝑀 is maximum
matching in 𝐺 . Hence, contradiction. Therefore,𝑀/𝐵 is a maximum matching in 𝐺/𝐵.

(⇐=) : Suppose𝑀 is not a maximum matching in𝐺 . Now WLOG we can assume the blossom has an empty stem.
Otherwise, if 𝑄 is the stem of 𝐵 we can consider the matching 𝑀 ′ = 𝑀 ⊕𝑄 and |𝑀 ′ | = |𝑀 |. We now we will work with
a matching which gives 𝐵 empty stem, and we will call the matching 𝑀 . This will make the base of the blossom 𝐵 an
exposed vertex. Now since𝑀 is not a maximum matching in 𝐺 there exists an augmenting path 𝑃 : 𝑢 ⇝ 𝑣 . Now if 𝑃 has
no vertex of 𝐵 then 𝑃/𝐵 is also an augmenting path in 𝐺/𝐵, but we assumed that 𝑀/𝐵 is a maximum matching in 𝐺/𝐵.
Hence, 𝑃 must have a vertex of 𝐵. Let𝑤 be the first vertex of 𝑃 in 𝐵. Then vertex 𝑣𝑏 in𝐺/𝐵 is unmatched. We remove the
part𝑤 ⇝ 𝑣 from 𝑃 . Let 𝑃 ′ = 𝑢 ⇝ 𝑤 . Now if𝑤 is the base of 𝐵 then 𝑃 ′ is an augmenting path, and it is also an augmenting
path of 𝐺/𝐵 which is not possible. So𝑤 is not the base of the 𝐵.

The last edge of 𝑃 ′ is matched then it is also an edge of 𝐵. Then𝑤 is not the first vertex of 𝑃 since the other end of
the last of 𝑃 ′ is before 𝑤 . If the last edge of 𝑃 ′ is not matched then 𝑃 ′ is already an odd length alternating path from an
exposed vertex. Inside 𝐵 we can find an even length alternating path from𝑤 to the base of 𝐵 where the edge incident on
𝑤 is matched edge. Let that path is 𝑃 . Now consider the path 𝑃 = 𝑃 ′ + 𝑃 . It is an augmenting path from 𝑢 to the base of
𝐵. Now since 𝑣𝑏 is unmatched in 𝐺/𝐵, 𝑃/𝐵 is also an augmenting path in 𝐺/𝐵. But this contradicts the assumption that
𝑀/𝐵 is a maximum matching in 𝐺/𝐵. Then 𝑃 can not exist. Hence,𝑀 is a maximum matching in 𝐺 . ■

Question 13.2

If we find a maximum matching 𝑀∗ in 𝐺/𝐵 and then let 𝑁 = 𝑀∗ ∪ (Matching edges in 𝐵), is 𝑁 a maximum
matching in 𝐺?

The answer is no. Consider the following example

𝑤0

𝑤1𝑤2

𝑤3 𝑣3

𝑣2 𝑣1

𝑣0

𝑀 = {(𝑢0,𝑢1), (𝑢2,𝑢3)}

𝑏

𝑤0

𝑤1𝑤2

𝑤3

N = {(𝑤2,𝑏)}
⇓

N ′ = {(𝑤2,𝑢2), (𝑢3,𝑢4), (𝑢0,𝑢1)}

𝑁 ′ is not maximum matching. Since {(𝑣𝑖 ,𝑤𝑖) | 𝑖 ∈ {0, 1, 2, 3}} is maximum matching.

Note:-

The above is not contradicting the theorem since the blossom with respect to 𝑁 ′ is not the blossom with respect to𝑀 .

13.2.3 Algorithm for MaximumMatching

Suppose we start with a matching 𝑀 in 𝐺 . We mark all the exposed vertices to be even and keep all the other vertices
unmarked at this point. Hence, initially all the vertices are marked even. Now we use the same algorithm for finding
augmenting paths as in the case of bipartite graphs but with slight modifications. In the case of bipartite graphs at each
iteration we created the 𝑀-alternating tree we went one level at a time. But in the case of general graphs we’ll go two
levels at a time. So at each iteration we start with a vertex which is labeled even. Let 𝑢 be a vertex labeled. Now for each
neighbor 𝑣 of 𝑢:

Case 1: 𝑣 is unmarked. This implies 𝑣 is matched. Then mark 𝑣 as odd and 𝑀 (𝑣) i.e. the vertex matched with 𝑣 as even
and continue the algorithm.

Page 91 Chapter 13 Matching

Case 2: 𝑣 is marked, and it is in the same tree as 𝑢. Then we have a blossom 𝐵 with respect to 𝑀 . We shrink the blossom
𝐵 and therefore, we have the matching𝑀/𝐵 in the graph𝐺/𝐵. Mark the shrunk vertex 𝑣𝑏 even and continue the
algorithm in the graph 𝐺/𝐵 with the matching𝑀/𝐵.
If we get an even cycle then we just ignore i.e. ignore any neighbor marked odd.

Case 3: 𝑣 is marked even, and it is in a different tree from 𝑢. Let 𝑟𝑢 and 𝑟𝑣 are the root exposed vertices in the tree of
𝑢 or 𝑣 respectively. Then consider the path 𝑃 : 𝑟𝑢 ⇝ 𝑢 → 𝑣 ⇝ 𝑟𝑣 . This is an augmenting path from 𝑟𝑢 to 𝑟𝑣 .
Hence, the algorithm found an augmenting path with respect to 𝑀 . Now unshrink the blossoms in 𝑃 to get the
alternating path in 𝐺 . Let that path is 𝑃 . So the algorithm updates the matching 𝑀 to 𝑀 ⊕ 𝑃 , and then we will
start the algorithm again with the new matching𝑀 ⊕ 𝑃 .

Shrink Unshrink

Time Complexity: The algorithm performs at most 𝑛 augmentations. Between two augmentations, it will shrink a
blossom atmost 𝑛2 times as each shrinking reduces the number of vertices by at least 2. The time to construct the alternating
tree is at most 𝑂 (𝑛 +𝑚). Hence, the total time taken by the algorithm is 𝑂 (𝑛2 (𝑛 +𝑚)) = 𝑂 (𝑛2𝑚).

13.2.4 Tutte-Berge Theorem

Theorem 13.2.3
In any graph 𝐺 = (𝑉 ,𝐸) for any matching𝑀 in 𝐺 and any 𝑆 ⊆ 𝑉 ,

|𝑀 | ≤ |𝑉 | + |𝑆 | −Odd(𝐺 − 𝑆)2

where Odd(𝐺 − 𝑆) is the number of odd components in 𝐺 − 𝑆 .

Proof: If |𝑆 | > Odd(𝐺 − 𝑆) then we already have this since |𝑀 | ≤ |𝑉 |
2 . So let |𝑆 | ≤ Odd(𝐺 − 𝑆). Now each odd size

component has at least one vertex unmatched in that component. So if that vertex is matched it is matched with a vertex
in 𝑆 . So𝑀 leaves at least Odd(𝐺 − 𝑆) − |𝑆 | vertices unmatched. Hence, at most all the rest |𝑉 | − (Odd(𝐺 − 𝑆) − |𝑆 |) vertices
are matched in 𝐺 . Therefore, |𝑀 | ≤ |𝑉 |+|𝑆 |−Odd(𝐺−𝑆)2 . ■

Now the algorithm stops if none of the cases 1, 2, or 3 happens. Let𝐺 ′ = (𝑉 ′,𝐸′) is the final graph after shrinking
all the blossoms algorithm encountered in its runtime. And let 𝑀 ′ is the matching in 𝐺 ′ after the algorithm stops. Now
we will show that𝑀 ′ is a maximum matching in 𝐺 ′.

Lemma 13.2.4
When none of the 3 cases holds the matching𝑀 ′ is maximum in 𝐺 ′.

Proof: We will show that 𝑀 ′ attains equality in Theorem 13.2.3 for some subset 𝑆 of vertices. Since the algorithm
stops the 𝑀 ′-alternating tree in 𝐺 ′ has no blossoms. So the 𝑀 ′-alternating tree is a forest. The algorithm marked the
vertices of 𝐺 ′ as even or odd. Take 𝑆 be the set of all odd marked vertices. Hence, all the components of 𝐺 ′ − 𝑆 are odd
components where each component contains single vertex which is labeled even. So Odd(𝐺 − 𝑆) = |𝑉 ′ | − |𝑆 |. Therefore,
|𝑉 ′ |+|𝑆 |−Odd(𝐺−𝑆)

2 =
|𝑉 ′ |+𝑆 |− (|𝑉 |− |𝑆 |)

2 = |𝑆 |. Since all the odd vertices arematchedwith even vertices in𝐺 ′wehave |𝑆 | = |𝑀 ′ |.
Hence, |𝑀 ′ | = |𝑉 |+|𝑆 |−Odd(𝐺−𝑆)2 . Therefore,𝑀 ′ is a maximum matching in 𝐺 ′. ■

Let the algorithm performs 𝑘 blossom shrinking. Let 𝐵1, . . . ,𝐵𝑘 are the blossoms. And let 𝑀𝑖 be the corresponding
matching. 𝑖 = 0 corresponds to the original graph. Let 𝐺𝑖 = (𝑉𝑖 ,𝐸𝑖) be the graph after 𝑖𝑡ℎ blossom shrinking. So 𝐺0 = 𝐺
and 𝐺𝑘 is the final graph after the algorithm stops. The above lemma shows that 𝑀𝑘 is a maximum matching in 𝐺𝑘 . We

13.2 Matching in General Graphs Page 92

will show that if we unshrink the blossoms one at a time in the reverse order of shrinking then we will get a maximum
matching.

Lemma 13.2.5
If𝑀𝑘 is a maximum matching in 𝐺𝑘 . Then𝑀𝑘−1 is a maximum matching in 𝐺𝑘−1.

Proof: 𝐺𝑘 is obtained from 𝐺𝑘−1 by shrinking the blossom 𝐵𝑘 . So 𝐺𝑘 = 𝐺𝑘−1/𝐵𝑘 , 𝑀𝑘 = 𝑀𝑘−1/𝐵𝑘 . So |𝑉𝑘−1 | = |𝑉𝑘 | +
|𝐵𝑘 | − 1 and |𝑀𝑘−1 | = |𝑀𝑘 | + 1

2 (|𝐵𝑘 | − 1). Let 𝑆 be the set of odd vertices in 𝐺𝑘 . Now while unshrinking the blossom 𝐵𝑘
we add an even number of vertices (|𝐵𝑘 | − 1) to one of the connected components to one of the connected components of
𝐺𝑘 − 𝑆 and all these vertices are marked even. So the set of odd vertices of𝐺𝑘−1 are the same as set of odd vertices in𝐺𝑘 .
Hence, Odd(𝐺𝑘 − 𝑆) = Odd(𝐺𝑘−1 − 𝑆). Therefore,

|𝑉𝑘−1 | + |𝑆 | −Odd(𝐺𝑘−1 − 𝑆)
2 =

|𝑉𝑘 | + |𝐵𝑘 | − 1 + |𝑆 | −Odd(𝐺𝑘 − 𝑆)
2 = |𝑀𝑘 | +

|𝐵𝑘 | − 1
2 = |𝑀𝑘−1 |

Therefore𝑀𝑘−1 is a maximum matching in 𝐺𝑘−1. ■

Using the same 𝑆 we can show that if 𝑀𝑖+1 is a maximum matching in 𝐺𝑖+1 then 𝑀𝑖 is a maximum matching in 𝐺𝑖 .
Hence, we can conclude that if 𝑀𝑘 is a maximum matching in 𝐺𝑘 then 𝑀0 is a maximum matching in 𝐺 . Therefore, after
unshrinking all the blossoms in the reverse order of shrinking we get a maximum matching in 𝐺 . Therefore, the above
algorithm returns a maximum matching of 𝐺 .

Also, we have shown that the maximum matching attains equality in Theorem 13.2.3 for the set of odd vertices 𝑆 .
Hence, we have the following theorem.

Theorem 13.2.6 Tutte-Berge Theorem

For any graph 𝐺 = (𝑉 ,𝐸),
max

𝑀 matching in𝐺
|𝑀 | = min

𝑆⊆𝑉

|𝑉 | + |𝑆 | −Odd(𝐺 − 𝑆)
2

where Odd(𝐺 − 𝑆) is the number of odd components in 𝐺 − 𝑆 .

Now from the Tutte-BergeTheorem we conclude that a graph has a perfect matching if and only if for every 𝑆 ⊆ 𝑉 ,
the number of odd components in 𝐺 − 𝑆 is at most |𝑆 |. Hence, we have the following corollary.

Corollary 13.2.7 Tutte’s Matching Theorem

For any graph 𝐺 = (𝑉 ,𝐸), 𝐺 has a perfect matching if and only if for every 𝑆 ⊆ 𝑉 , Odd(𝐺 − 𝑆) ≤ |𝑆 |.

Chapter 14
Linear Programming

14.1 Introduction

Definition 14.1.1: Linear Program

A linear programming problem asks for a vector 𝑥 ∈ R𝑑 that maximizes or minimizes a given linear function,
among all vectors 𝑥 that satisfy given set of linear inequalities.

The general form of a maximization linear programming problem is the following: given 𝑐 ∈ R𝑛 , 𝑏 ∈ R𝑚 , 𝑎𝑖 ∈ R𝑛

for each 𝑖 ∈ [𝑚] then

maximize 𝑐𝑇𝑥

subject to 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ [𝑝],
𝑎𝑇𝑖 𝑥 = 𝑏𝑖 ∀ 𝑖 ∈ {𝑝 + 1, . . . ,𝑝 + 𝑞},
𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖 ∀ 𝑖 ∈ {𝑝 + 𝑞 + 1, . . . ,𝑚},
𝑥 𝑗 ≥ 0 ∀𝑗 ∈ [𝑘],
𝑥 𝑗 ≤ 0 ∀𝑗 ∈ [{𝑘 + 1, . . . ,𝑘 + 𝑙} (Some 𝑥 𝑗 ’s are free)

The similar goes for minimization linear programming problem. For maximization problem we can always write
the LP in the form

maximize 𝑐𝑇𝑥

subject to 𝑎𝑇𝑖 𝑥 ≤ 𝑏′𝑖 ∀ 𝑖 ∈ [𝑚],
𝑥 ′𝑗 ≥ 0 ∀𝑗 ∈ [𝑛]

And then the LP is said to be in the canonical form. What we can do is the following:
• For 𝑖 ∈ {𝑝 + 𝑞 + 1, . . . ,𝑚}, we can replace 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 with −𝑎𝑇𝑖 𝑥 ≥ −𝑏𝑖
• For 𝑖 ∈ {𝑝 + 1, . . . ,𝑝 + 𝑞}, we can replace with two constraints 𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖 and 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖
• For 𝑗 ∈ {𝑘 + 1 . . . ,𝑘 + 𝑙}, we can replace 𝑥 𝑗 ≤ 0 with −𝑥 𝑗 ≥ 0

• For 𝑗 ∈ {𝑘 + 𝑙 + 1 . . . ,𝑛}, we can replace the free 𝑥 𝑗 ’s with 𝑥+𝑗 − 𝑥−𝑗 all the equations where 𝑥+𝑗 ,𝑥−𝑗 ≥ 0

This way we can always get a LP of that form. Now we can replace the 𝑎𝑖 for 𝑖 ∈ [𝑚] with a matrix𝐴 ∈ R𝑚×𝑛 and replace
the constraint 𝑎𝑇𝑖 𝑥 ≤ 𝑏′𝑖 , ∀ 𝑖 ∈ [𝑚] with 𝐴𝑥 ≤ 𝑏

maximize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏,
𝑥 ≥ 0

minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0

14.2 Geometry of LP Page 94

14.2 Geometry of LP

Definition 14.2.1: Feasible Point and Region

A point 𝑥 ∈ R𝑛 is feasible with respect to some LP if it satisfies all the linear constraints. The set of all feasible
points is called the feasible region for that LP.

Feasible region of a LP has a particularly nice geometric structure. Before that we will first introduce some geo-
metric terminologies used in the linear programming context:

Definition 14.2.2: Hyperplane, Polyhedron, Polytope

• Line: The set {𝑥 + 𝜆𝑑 , 𝜆 ∈ R} is line for any 𝑥 ,𝑑 ∈ R𝑛 .

• Hyperplane: The set {𝑥 ∈ R𝑛 : 𝑎𝑥 = 𝑏} is a hyperplane for any 𝑎 ∈ R𝑛 and 𝑏 ∈ R.

• Hyperspace: The set {𝑥 ∈ R𝑛 : 𝑎𝑥 ≤ 𝑏} is a hyperspace or half-space for any 𝑎 ∈ R𝑛 and 𝑏 ∈ R.

• Polyhedron: A polyhedron is the intersection of a finite set of half-spaces i.e. the set {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}
for any 𝐴 ∈ R𝑛×𝑚 , 𝑏 ∈ R𝑚 .

• Polytope: A bounded polyhedron is called a polytope.

Now it is not hard to verify that any polyhedron is a convex set i.e. if a polyhedron contains two points then it
contains the entire line segment joining those two points.

Lemma 14.2.1
Polyhedron is a convex set

Hence the feasible region of a LP creates a polyhedron in R𝑛 . And 𝑐𝑇𝑥 is the hyperplane normal to the vector 𝑐 and
the objective of the LP is by moving the plane normal to the vector 𝑐 for which point in the polyhedron the hyperplane
𝑐𝑇𝑥 has the highest value. Since polyhedron can be unbounded there may not exists any point 𝑥 where 𝑐𝑇𝑥 is maximum.

Suppose we have a LP
maximize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏,
𝑥 ≥ 0

Let 𝑃 be the polyhedron 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}. Then given 𝑥∗ ∈ 𝑃 if any constraint 𝑎𝑇𝑖 𝑥∗ = 𝑏𝑖 then this constrain is said
to be tight or binding or active at 𝑥∗. Now two constraints 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 and 𝑎𝑇𝑗 𝑥 ≤ 𝑏 𝑗 are said to be linearly independent if 𝑎𝑖
and 𝑎 𝑗 are linearly independent.

Definition 14.2.3: Basic Solution and Basic Feasible Solution

𝑥∗ ∈ R𝑛 is a basic solution if 𝑛 linearly independent constraints are active at 𝑥∗ (Doesn’t need to be feasible).
𝑥∗ ∈ R𝑛 is a basic feasible solution if 𝑥∗ is a basic solution and 𝑥∗ ∈ 𝑃 . The basic feasible solutions are also

called corners of a polyhedron.

Theorem 14.2.2
Given a LP

minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0

Let 𝑃 is the polyhedron {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏,𝑥 ≥ 0} . Suppose 𝑃 is non-empty and has at least one basic feasible

Page 95 Chapter 14 Linear Programming

solution then either the optimal value is −∞ or there is an optimal basic feasible solution.

Theorem 14.2.3
If polyhedron 𝑃 does not contain a line it contains at least one basic feasible solution (Hence if 𝑃 is bounded it
contains at least one basic feasible solution).

With this geometry in hand, we can easily picture two pathological cases where a given linear programming
problem has no solution. The first possibility is that there are no feasible points; in this case the problem is called infeasible.
The second possibility is that there are feasible points at which the objective function is arbitrarily large; in this case, we
call the problem unbounded. The same polyhedron could be unbounded for some objective functions but not others, or it
could be unbounded for every objective function.

Example 14.2.1

• Maximum Matchings: Given undirected graph 𝐺 = (𝑉 ,𝐸). Say variable 𝑥𝑒 for each 𝑒 ∈ 𝐸, 𝑥𝑒 = 1 =⇒ 𝑒

in matching and 𝑥𝑒 = 0 otherwise.

maximize
∑︁
𝑒∈𝐸

𝑥𝑒

subject to
∑︁

𝑒 incident on 𝑣
𝑥𝑒 ≤ 1 ∀ 𝑣 ∈ 𝑉 ,

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸,
𝑥𝑒 ∈ {0, 1} ∀ 𝑒 ∈ 𝐸

Observation. 𝑀 is a matching iff {𝑥 : 𝑥𝑒 = 1 if 𝑒 ∈ 𝑀 ,= 0 otherwise} is a feasible solution

• Maximum 𝑠 − 𝑡 Flow: Given directed graph 𝐺 = (𝑉 ,𝐸) with vertices 𝑠 , 𝑡 and capacity 𝑐𝑒 on edges. Say
variable 𝑥𝑒 for each edge and equal to flow on that edge. Then the LP of this problem:

maximize
∑︁

𝑒∈out(𝑠)
𝑥𝑒

subject to
∑︁

𝑒∈in(𝑣)
𝑥𝑒 −

∑︁
𝑐∈out(𝑣)

𝑥𝑒 = 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,

𝑐𝑒 ≥ 𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

Wewill now introduce a theoremwithout proof that for any LPwith a polytopewe can find a solution in polynomial
time.

Theorem 14.2.4
Let 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥ 𝑏} be a polytope. Then we can find an optimal basic feasible solution for the LP min 𝑐𝑇𝑥
where 𝑥 ∈ 𝑃 in polynomial time.

14.3 LP Integrality

For the LP for matchings in bipartite graphs 𝐺 = (𝐿 ∪ 𝑅,𝐸) we have:

maximize
∑︁
𝑒∈𝐸

𝑥𝑒

subject to
∑︁

𝑒 incident on 𝑣
𝑥𝑒 ≤ 1 ∀ 𝑣 ∈ 𝑉 ,

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

14.3 LP Integrality Page 96

We want 𝑥𝑒 ∈ {0, 1} i.e. we want to have integral solution for this LP

Question 14.1

LPs can give fractional solutions. When is solution integral?

Sufficient Condition: Every basic feasible solution of the feasible polytope is integral i.e. 𝑥∗ is basic feasible solution
=⇒ 𝑥∗ ∈ Z𝑛 . If all basic feasible solution are integral then for all 𝐼 ⊆ [𝑚] with |𝐼 | = 𝑛, 𝐴−1

𝐼
𝑏𝐼 is integral. Let 𝑥 = 𝐴−1

𝐼
𝑏𝐼

Then 𝑗𝑡ℎ component 𝑥 𝑗 =
|𝐴 𝑗

𝐼
|

|𝐴 | (Cramer’s Rule).

14.3.1 Totally Unimodular Matrix

Definition 14.3.1: Totally Unimodular Matrix (TUM)

A matrix 𝐴 ∈ {0, 1,−1}𝑚×𝑛 is totally unimodular (TU) if every square submatrix of 𝐴 has determinant −1, 0, 1.

Hence in the above LP is 𝐴 is TU and 𝑏 is integral then all basic feasible solutions are integral.

Lemma 14.3.1
Let 𝐴 be TUM and 𝑏 ∈ Z𝑛 then 𝑃 = {𝑥 : 𝐴𝑥 ≥ 𝑏} is integral i.e. every basic feasible solution is integral.

Hence using Theorem 14.2.4 if the polytope is integral we can find optimal integral solution in polynomial time.
We will now discuss properties of Totally Unimodular Matrix.

Lemma 14.3.2
𝐴 ∈ {0, 1,−1}𝑚×𝑛 is TU iff the following are TU:

(i) −𝐴

(ii) 𝐴𝑇

(iii)
[
𝐴 𝑒𝑖

]
,
[
𝐴 −𝑒𝑖

]
(iv)

[
𝐴 𝐼

]
,
[
𝐴 −𝐼

]
(v)

[
𝐴 𝐴𝑖

]
,
[
𝐴 −𝐴𝑖

]
where 𝐴𝑖 is the 𝑖𝑡ℎ column of 𝐴.

Corollary 14.3.3
If 𝐴 is TUM and 𝑎,𝑏, 𝑐 ,𝑑 ∈ Z𝑛 are integer vectors then the polytope 𝑄 = {𝑥 ∈ R𝑛 : 𝑎 ≤ 𝐴𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑} is
integral.

Proof: We can combine the four inequalities in one inequality. Consider the matrix
[
𝐴 −𝐴 𝐼 −𝐼

]𝑇 . Then the given
polytope is

𝑄 =

𝑥 ∈ Z𝑛 :


𝐴

−𝐴
𝐼

−𝐼

 𝑥 ≤

𝑏

−𝑎
𝑑

−𝑐




By Lemma 14.3.2,
[
𝐴 −𝐴 𝐼 −𝐼

]𝑇 is a TUM since 𝐴 is TUM. Therefore the polytope 𝑄 is integral. ■

The following theorem lets us to give a necessary and sufficient condition to check if a given matrix is TUM. Again
we will accept the following theorem without the proof since the proof is a little nontrivial.

Page 97 Chapter 14 Linear Programming

Theorem 14.3.4
Let 𝐴 ∈ {−1, 0, 1}𝑚×𝑛 . Then 𝐴 is TU iff every set 𝑆 ⊆ [𝑛] can be partitioned into 𝑆1, 𝑆2 such that∑︁

𝑖∈𝑆1
𝐴𝑖 −

∑︁
𝑖∈𝑆2

𝐴𝑖 ∈ {−1, 0, 1}𝑚

where 𝐴𝑖 is the 𝑖𝑡ℎ column of 𝐴. C

14.3.2 Integrality of Some Well-Known Polytopes

Now using this theorem we will show that the polytope for bipartite maximum matching is integral. The LP for bipartite
maximum matching is given by:

maximize
∑︁
𝑒∈𝐸

𝑥𝑒

subject to
∑︁

𝑒 incident on 𝑣
𝑥𝑒 ≤ 1 ∀ 𝑣 ∈ 𝑉 ,

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

Lemma 14.3.5
The polytope for bipartite maximum matching is integral.

Proof: Let 𝐴 be the matrix for the polytope. Now clearly from the construction of the polytope we have 𝐴 ∈ {0, 1}𝑛×𝑚
where 𝑛 = |𝑉 | and𝑚 = |𝐸 |. Now we will show that 𝐴𝑇 is TUM. Let 𝐿 and 𝑅 are the two sets of vertices in the bipartite
graph. Now suppose 𝑆 ⊆ 𝐿 ∪ 𝑅. Then take 𝑆1 = 𝑆 ∩ 𝐿 and 𝑆2 = 𝑆 ∩ 𝑅. Then for any row 𝑒 ∈ 𝐸, we have∑︁

𝑖∈𝑆1
𝐴𝑖 −

∑︁
𝑖∈𝑆2

𝐴𝑖 ∈ {−1, 0, 1}

Hence 𝐴𝑇 is TUM and therefore by Lemma 14.3.2 𝐴 is TUM. Hence the polytope for bipartite maximum matching is inte-
gral. ■

Note:-

For general graphs this polytope is not integral. Consider the triangle graph 𝐾3. Then the point
(1
2 ,

1
2 ,

1
2
)
is a feasible

solution but not in the convex hull of the integral solutions (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Lemma 14.3.6
The LP for 𝑠 − 𝑡 max flow is

maximize
∑︁

𝑒∈out(𝑠)
𝑥𝑒

subject to
∑︁

𝑒∈in(𝑣)
𝑥𝑒 −

∑︁
𝑒∈out(𝑣)

𝑥𝑒 = 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,

𝑐𝑒 ≥ 𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

Then the max flow polytope is integral.

Proof: Let 𝐴 be the matrix for the polytope. We will show that 𝐴 is TUM. Given 𝑆 ⊆ 𝑉 \ {𝑠 , 𝑡} take 𝑆1 = 𝑆 and 𝑆2 = ∅.
By the first condition of the polytope for all vertices we already have satisfied the condition∑︁

𝑖∈𝑆1
𝐴𝑖 −

∑︁
𝑖∈𝑆2

𝐴𝑖 = 0 ∈ {−1, 0, 1}𝑚

14.4 Duality Page 98

Therefore the polytope is TUM and hence integral. ■

14.4 Duality

Suppose we have the following LP:

minimize 𝑥1 + 2𝑥2

subject to 𝑥1 − 𝑥2 ≥ 3,
2𝑥1 + 𝑥2 ≥ 1,
𝑥1,𝑥2 ≥ 0

Suppose we want to have a lower bount on the optimal solution of the LP. Then we will try to find a linear combination
of the constriants such that in the LHS we obtain some thing which is at most the objective function and on the RHS we
get the lower bound. So let we multiply the first constraint with 𝑦1, second with 𝑦2. For now 𝑦1,𝑦2 are unknowns. Then
we have the following:

𝑥1 + 2𝑥2 ≥ (𝑦1 + 2𝑦2)𝑥1 + (−𝑦1 +𝑦2)𝑥2
= 𝑦1 (𝑥1 − 𝑥2) +𝑦2 (2𝑥1 + 𝑥2) ≥ 3𝑦1 +𝑦2

But we also have the conditions that the coefficients of 𝑥1 and 𝑥2 can not be more than the coefficients of 𝑥1 and 𝑥2 in the
objective function respectively. So we have the following conditions:

𝑦1 + 2𝑦2 ≤ 1
−𝑦1 +𝑦2 ≤ 2

So now we have found a maximization LP which gives us a lower bound on the optimal solution of the original LP:

maximize 3𝑦1 +𝑦2

subject to 𝑦1 + 2𝑦2 ≤ 1,
−𝑦1 +𝑦2 ≤ 2,
𝑦1,𝑦2 ≥ 0

This is called the dual of the original LP. The original LP is called the primal of the dual. The primal and dual are related
in a very nice way. The following theorem gives us the relation between primal and dual.

For every minimization LP there is a dual LP that provides a lower bound on the optimal value of the primal LP.

Note:-

If the Primal LP is unbounded then the dual LP is infeasible.

Lemma 14.4.1
Dual of Dual is the primal LP

14.4.1 Dualization of LP

If the primal LP is in canonical form then we have the following:

maximize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏,
𝑥 ≥ 0

Primal

⇐⇒

minimize 𝑏𝑇𝑦

subject to 𝐴𝑇𝑦 ≤ 𝑐 ,
𝑥 ≥ 0

Dual

Page 99 Chapter 14 Linear Programming

Proof of Lemma 14.4.1: Suppose for 𝐴 ∈ R𝑚×𝑛 , 𝑐 ∈ R𝑛 , 𝑏 ∈ R𝑚 we have the following LP:

maximize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏 𝑥 ∈ R𝑛

Then the dual the LP is

minimize 𝑏𝑇𝑦

subject to 𝐴𝑇𝑦 = 𝑐 𝑦 ∈ R𝑚 ,
𝑦 ≥ 0

Now consider the LP

maximize −𝑏𝑇𝑦

subject to 𝐴𝑇𝑦 ≤ 𝑐 𝑦 ∈ R𝑚 ,
−𝐴𝑇𝑦 ≤ −𝑐 ,
−𝑦 ≤ 0

These two LP’s are equivalent. Now we obtained another LP which is equivalent to the dual LP. Now we will work
with this one. Let

𝐴̃ =


𝐴𝑇

−𝐴𝑇
−𝐼𝑚

 , 𝐴̃ ∈ R(2𝑛+𝑚)×𝑚 𝑐 =


𝑐

−𝑐
0

 , 𝑐 ∈ R2𝑛+𝑚 𝑏 = −𝑏

Then the above LP is basically the following

maximize 𝑏𝑇𝑦

subject to 𝐴̃𝑦 ≤ 𝑐 𝑦 ∈ R𝑚

Hence the dual of this LP is

minimize 𝑐𝑇𝑧

subject to 𝐴̃𝑇𝑧 = 𝑏 𝑧 ∈ R2𝑛+𝑚 ,
𝑧 ≥ 0

Let 𝑧 =
[
𝑝 𝑞 𝑟

]𝑇 where 𝑝 ,𝑞 ∈ 𝑏𝑏𝑅𝑛 and 𝑟 ∈ R𝑚 and let 𝑟𝑖 denote the 𝑖𝑡ℎ coordinate of 𝑟 for 𝑖 ∈ [𝑚]. . For any feasible
solution 𝑧 of the LP 𝐴𝑝 −𝐴𝑞 − 𝑟 = −𝑏 ⇐⇒ 𝐴(𝑞 − 𝑝) + 𝑟 = 𝑏. Take𝑤 = 𝑞 − 𝑝 then

𝐴𝑝 −𝐴𝑞 − 𝑟 = −𝑏 ⇐⇒ 𝐴(𝑞 − 𝑝) + 𝑟 = 𝑏 ⇐⇒ 𝐴𝑤 + 𝑟 = 𝑏

Since 𝑟 ≥ 0 we have 𝐴𝑤 ≤ 𝑏. And we have the minimize

𝑐𝑧 = 𝑐𝑇𝑝 − 𝑐𝑇𝑞 = 𝑐𝑇 (𝑝 − 𝑞)

Hence it is equivalent to maximize 𝑐𝑇𝑤 . Since final cost vector doesn’t depend on the vector 𝑟 we can disregard 𝑟 from
the constraints and replace with 𝐴𝑤 ≤ 𝑟 . Therefore the above LP is equivalent to

maximize 𝑐𝑇𝑤

subject to 𝐴𝑤 ≤ 𝑏 𝑤 ∈ R𝑛

This is LP is exactly the primal LP. Hence the dual of dual LP is the primal LP. ■

But if the primal LP is not in the canonical form then we have two options: either we can convert the primal to
the canonical form and the dualize it or we can directly dualize the primal LP. The following method gives us a way to
dualize the primal LP without converting it tot the canonical form.

14.4 Duality Page 100

maximize 𝑐𝑇𝑥

subject to 𝐴 𝑗𝑥 ≥ 𝑏 𝑗 ∀ 𝑗 ∈ [𝑑],
𝐴 𝑗𝑥 = 𝑏 𝑗 ∀ 𝑗 ∈ {𝑑 + 1, . . . ,𝑚},
𝑥𝑖 ≥ 0 ∀ 𝑖 ∈ [𝑘],
𝑥𝑖 is free ∀ 𝑖 ∈ {𝑘 + 1, . . . ,𝑛}

Primal

⇐⇒

minimize 𝑏𝑇𝑦

subject to
𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 ≤ 𝑐𝑖 ∀ 𝑖 ∈ [𝑘],

𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 = 𝑐 𝑗 ∀ 𝑖 ∈ {𝑘 + 1, . . . ,𝑛},

𝑦 𝑗 ≥ 0 ∀ 𝑗 ∈ [𝑑],
𝑦 𝑗 is free ∀ 𝑖 ∈ {𝑑 + 1, . . . ,𝑚}

Dual

So we have the following observations:

Observation. In dualization of a LP which is not in canonical form

Primal Dual

Non-negative variables ⇐⇒ Inequality constraints

Free variables ⇐⇒ Equality constraints

14.4.2 Weak and Strong Duality

Now as the motivation for constructing the dual LP.We have the following theoremwhich proves the any feasible solution
of the dual LP indeed gives a lower bound on the optimal solution of the primal LP.

Theorem 14.4.2Weak Duality Theorem

If 𝑥 ,𝑦 are feasible solutions for the primal and dual LPs respectively and then 𝑐𝑇𝑥 ≥ 𝑏𝑇𝑦.

Proof: We have

𝑏𝑇 ≤
𝑑∑︁
𝑗=1
𝑦 𝑗 (𝐴 𝑗𝑥) +

𝑚∑︁
𝑗=𝑑+1

𝑦 𝑗 (𝐴 𝑗𝑥) =
𝑑∑︁
𝑗=1
𝑦 𝑗𝐴 𝑗𝑥 =

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑦 𝑗𝐴 𝑗𝑖𝑥𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖

𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 ≤
𝑚∑︁
𝑖=1

𝑥𝑖𝑐𝑖 = 𝑐
𝑥

Hence we have the theorem. ■

We also have a much stronger theorem which tells us that the optimal solutions of the primal and dual LPs are
equal.

Theorem 14.4.3 Strong Duality Theorem

Let the primal and dual LP are feasible and 𝑥∗,𝑦∗ are the optimal solutions of the primal and dual LPs respectively.
Then 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗.

Notice that if for any feasible solution 𝑦 of the dual LP is 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦 then 𝑦 must be the optimal solution of the
dual LP.

14.4.3 Complementary Slackness

Question 14.2

Suppose we have optimal solutions 𝑥∗,𝑦∗ of the primal and dual LPs respectively. What can be said about which
constraints are tight in the primal and dual?

Page 101 Chapter 14 Linear Programming

Theorem 14.4.4 Complementary Slackness

Let 𝑥∗,𝑦∗ be the optimal solutions of the primal and dual LPs respectively iff:

(i) If 𝐴 𝑗𝑥∗ > 𝑏 𝑗 then 𝑦∗𝑗 = 0.

(ii) If 𝐴𝑖𝑇𝑦∗ < 𝑐𝑖 then 𝑥∗𝑖 = 0.

Proof: Suppose 𝑥∗,𝑦∗ are the optimal solutions of the primal and dual LPs respectively. Then by Strong DualityTheorem
we have

𝑘∑︁
𝑖=1

𝑥𝑖

𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 +
𝑛∑︁

𝑖=𝑘+1
𝑥𝑖

𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 =

𝑘∑︁
𝑖=1

𝑥𝑖𝑐𝑖 +
𝑛∑︁

𝑖=𝑘+1
𝑥𝑖𝑐𝑖

So we have
𝑘∑︁
𝑖=1

𝑥𝑖

𝑚∑︁
𝑗=1

𝐴 𝑗𝑖𝑦 𝑗 =

𝑘∑︁
𝑖=1

𝑥𝑖𝑐𝑖

Hence either𝑥𝑖 = 0 or
𝑚∑
𝑗=1
𝐴 𝑗𝑖𝑦 𝑗 = 𝑐𝑖 for all 𝑖 ∈ [𝑘]. So𝐴𝑖𝑇𝑦∗ < 𝑐𝑖 implies𝑥∗𝑖 = 0. Similarlywe have𝐴 𝑗𝑥∗ > 𝑏 𝑗 then𝑦∗𝑗 = 0. ■

There is also a relaxed version of the complementary slackness theorem,Theorem 15.1.4 which is useful in practice.
It is explained in the next chapter.

14.4.4 Max-Flow Min-Cut Theorem

So here using LP-duality we give another proof of Max-Flow Min-Cut Theorem. The LP for maximum flow is given by:

maximize
∑︁

𝑒∈out(𝑠)
𝑥𝑒

subject to
∑︁

𝑒∈in(𝑣)
𝑥𝑒 −

∑︁
𝑐∈out(𝑣)

𝑥𝑒 = 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,

𝑐𝑒 ≥ 𝑥𝑒 ∀ 𝑒 ∈ 𝐸,
𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

We can convert this LP by adding edges of 𝑖𝑛(𝑠) and giving them capacity 0. So we have the modified LP:

maximize
∑︁

𝑒∈out(𝑠)
𝑥𝑒 −

∑︁
𝑒∈in(𝑠)

𝑥𝑒

subject to
∑︁

𝑒∈in(𝑣)
𝑥𝑒 −

∑︁
𝑐∈out(𝑣)

𝑥𝑒 = 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,

𝑐𝑒 ≥ 𝑥𝑒 ∀ 𝑒 ∈ 𝐸,
𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

For the first constraint we have the variables 𝛼𝑣 and for the second constrain we have the variables 𝛽𝑒 . So the dual of this
LP is given by:

minimize
∑︁
𝑒∈𝐸

𝑐𝑒𝛽𝑒

subject to −𝛼𝑢 + 𝛼𝑣 + 𝛽𝑒 ≥ 0 ∀ 𝑒 = (𝑢, 𝑣) ∈ 𝐸,𝑢, 𝑣 ∉ {𝑠 , 𝑡},
𝛼𝑣 ≥ 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,
𝛽𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

14.4 Duality Page 102

Now we can add 𝛼𝑠 = 1 and 𝛼𝑡 = 0 to the dual LP and obtain the modified dual LP:

minimize
∑︁
𝑒∈𝐸

𝑐𝑒𝛽𝑒

subject to 𝛽𝑒 ≥ 𝛼𝑢 − 𝛼𝑣+ ∀ 𝑒 = (𝑢, 𝑣) ∈ 𝐸,𝑢, 𝑣 ∉ {𝑠 , 𝑡},
𝛼𝑣 ≥ 0 ∀ 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑠 , 𝑡 ,
𝛽𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸,
𝛼𝑠 = 1,
𝛼𝑡 = 0

Now for the max-flow LP we already proved in Lemma 14.3.6 that the polytope is integral. By Lemma 14.3.2 the polytope
for the dual is also integral. Let 𝑥∗, (𝛼∗, 𝛽∗) be the optimal solution of the primal and dual LPs respectively. Now by
Complementary Slackness we have the following:

𝑥∗𝑒 > 0 =⇒ 𝛽∗𝑒 = 𝛼
∗
𝑢 − 𝛼∗𝑣 and 𝛽∗𝑒 > 0 =⇒ 𝑥∗𝑒 = 𝑐𝑒

Now 𝛼∗𝑠 = 1. Let 𝑋 = {𝑣 : 𝛼∗𝑣 ≥ 1}. Then 𝑠 ∈ 𝑋 and 𝑡 ∉ 𝑋 . Hence 𝑋 is a 𝑠 − 𝑡 cut. Now consider an edge (𝑢, 𝑣) out of 𝑋 .
Then

𝛼∗𝑢 ≥ 1 and 𝛼∗𝑣 < 1 =⇒ 𝛽∗𝑒 > 0 =⇒ 𝑥∗𝑒 = 𝑐𝑒

And for an edge 𝑒 = (𝑢, 𝑣) in to 𝑋
𝑥∗𝑒 > 0,𝛼∗𝑢 < 1,𝛼∗𝑣 ≥ 1 =⇒ 𝛽∗𝑒 < 0

Hence for an edge 𝑒 into 𝑋 , 𝑥∗𝑒 = 0. Hence maximum flow is equal to the
∑

𝑒∈out(𝑋)
𝑐𝑒 and this is the minimum cut.

14.4.5 Maximum Bipartite Matching minimum Vertex Cover

The maximum bipartite matching problem is given by the following LP:

maximize
∑︁
𝑒∈𝐸

𝑥𝑒

subject to
∑︁

𝑒 incident on 𝑣
𝑥𝑒 ≤ 1 ∀ 𝑣 ∈ 𝑉 ,

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸

The dual of the LP si given by

minimize
∑︁
𝑣∈𝑉

𝑦𝑣

subject to 𝑦𝑢 +𝑦𝑣 ≥ 1 ∀ (𝑢, 𝑣) ∈ 𝐸,
𝑦𝑣 ≥ 0 ∀ 𝑣 ∈ 𝑉

Since in Lemma 14.3.5 we have proved the polytope for bipartite maximum matching is integral the polytope for the dual
is also integral.

Definition 14.4.1: Vertex Cover

Given 𝐺 = (𝑉 ,𝐸) a vertex cover is a subset 𝐶 ⊆ 𝑉 such that ∀ 𝑒 ∈ 𝐸 at least one of the endpoints of 𝑒 is in 𝐶 .

Then we have the following lemma:

Lemma 14.4.5
Let 𝐶 be a vertex cover. Then there exists a dual feasible solution 𝑦 such that

∑
𝑣
𝑦𝑣 = |𝐶 |.

Proof: Consider the vector 𝑦 ∈ {0, 1} |𝑉 | such that 𝑦𝑣 = 1 if 𝑣 ∈ 𝐶 and 𝑦𝑣 = 0 otherwise. Then we have the lemma. ■

Page 103 Chapter 14 Linear Programming

Lemma 14.4.6
Let 𝑦 be an integral dual solution. Then 𝐶 = {𝑣 : 𝑦𝑣 ≥ 1} is a vertex cover.

Proof: For every edge 𝑒 = (𝑢, 𝑣) we have 𝑦𝑢 +𝑦𝑣 ≥ 1. So either 𝑦𝑢 ≥ 1 or 𝑦𝑣 ≥ 1 as 𝑦 is integral. Hence either 𝑢 ∈ 𝐶 or
𝑣 ∈ 𝐶 . Hence every edge is covered by 𝐶 and hence 𝐶 is a vertex cover. ■

Note:-

In general graphs computing a minimum sized vertex cover in NP-hard. But since for bipartite graph the polytope is
integral we can compute minimum weight vertex cover in polynomial time.

Chapter 15
Approximation Algorithms using LP

In this chapter we will study some approximation algorithms using linear programming to get better approximation ratios
of the optimal solution.

15.1 Set Cover

Set Cover
Input: U: Universe of all elements 𝑢1, . . . ,𝑢𝑛

S = {𝑆1, . . . , 𝑆𝑚}, 𝑆𝑖 ⊆ U forall 𝑖 ∈ [𝑚]
Function 𝑐 : S → Z0

Question: GivenU,S and the function 𝑐 find 𝑇 ⊆ [𝑚] such that
⋃
𝑖∈𝑇

𝑆𝑖 = U to minimize the total cost 𝑐 (𝑇) =∑
𝑖∈𝑇

𝑐 (𝑆𝑖)

Since the special case of Set Cover is basically the Vertex Cover problem we discussed earlier, we know that Set
Cover is NP-hard. We will discuss NP-hardness in the next chapter.

Theorem 15.1.1
Set Cover is NP-hard.

Since we are going to find approximate solutions using LP let’s first write the linear program for Set Cover:

minimize
∑︁
𝑆∈S

𝑐 (𝑆)𝑥𝑆

subject to
∑︁
𝑆 :𝑢∈𝑆

𝑥𝑆 ≥ 1 ∀ 𝑢 ∈ U,

𝑥𝑆 ≥ 0 ∀ 𝑆 ∈ S

15.1.1 Frequency 𝑓 -Approximation Algorithm

Let for any element 𝑢 ∈ U, 𝑓𝑢 is the frequency of the element 𝑢 in S i.e. 𝑓𝑢 = |{𝑆 ∈ S : 𝑢 ∈ 𝑆}|. Then let 𝑓 = max{𝑓𝑢 : 𝑢 ∈
U}. Then we want to find a 𝑓 -approximation algorithm for set cover.

Question 15.1

For vertex cover what is 𝑓 ?

For all 𝑒 ∈ 𝐸 we have 𝑓𝑒 = 2 since the elements of universe corresponds to the edges and the set corresponds to
vertices and each edge is contained in exactly 2 sets. So 𝑓 = 2.

Page 105 Chapter 15 Approximation Algorithms using LP

Algorithm 54: 𝑓 -Approximate Algorithm
Input: U,S, 𝑐
Output: 𝑇 ⊆ [𝑚] such that

⋃
𝑖∈𝑇

𝑆𝑖 = U and
∑
𝑖∈𝑇

𝑐 (𝑆𝑖) is minimized

1 begin

2 𝑇 ←− ∅
3 𝑥 ←− 0 |S |
4 Let 𝑥∗ is the optimal solution of the LP for Set Cover problem
5 for 𝑆𝑖 ∈ S do

6 if 𝑥∗
𝑆𝑖
≥ 1

𝑓
then

7 𝑇 ←− 𝑇 ∪ {𝑖}
8 𝑥𝑆𝑖 ←− 1

9 return 𝑇

Lemma 15.1.2
𝑥 is a feasible solution.

Proof: For all 𝑒 ∈ U there are at most 𝑓 sets containing 𝑒 . Thus, at most 𝑓 terms in the summation in 𝐿𝐻𝑆 of the first
constraint for each 𝑒 ∈ UThus in 𝑥∗ at least one such term is ≥ 1

𝑓
. ■

Lemma 15.1.3∑
𝑆∈S

𝑐 (𝑆)𝑥𝑆 ≤ 𝑓 ·
∑
𝑆∈S

𝑐 (𝑆)𝑥∗
𝑆

Proof: In 𝑥 if 𝑥𝑆 = 1 that means 𝑥∗
𝑆
≥ 1

𝑓
. Therefore, we have the lemma. ■

Hence, with this algorithm we can get a 𝑓 -approximation for Set Cover problem. In the next subsection we will
see a new way of getting the same approximation ratio.

15.1.2 Frequency 𝑓 -Approximation Algorithm through Dual Fitting

First let’s write the dual of the LP for Set Cover problem:

minimize
∑︁
𝑆∈S

𝑐 (𝑆)𝑥𝑆

subject to
∑︁
𝑆 :𝑢∈𝑆

𝑥𝑆 ≥ 1 ∀ 𝑢 ∈ U,

𝑥𝑆 ≥ 0 ∀ 𝑆 ∈ S

Primal

“Covering Problem”

⇐⇒

maximize
∑︁
𝑢∈U

𝑦𝑢

subject to
∑︁
𝑢∈𝑆

𝑦𝑢 ≤ 𝑐 (𝑆) ∀ 𝑆 ∈ S,

𝑦𝑢 ≥ 0 ∀ 𝑢 ∈ U

Dual

“Packing Problem”
Both the primal and dual are feasible. Let 𝑥 ,𝑦 are feasible solutions of the primal and dual respectively. Then by Weak
Duality we have ∑︁

𝑆∈S
𝑐 (𝑆)𝑥𝑆 ≥

∑︁
𝑢∈U

𝑦𝑢

Let 𝑥∗,𝑦∗ are the optimal solutions of primal and dual respectively. Then by Complementary Slackness

𝑥∗𝑆 > 0 =⇒
∑︁
𝑢∈𝑆

𝑦∗𝑢 = 𝑐 (𝑆), 𝑦∗𝑢 > 0 =⇒
∑︁
𝑆 :𝑢∈𝑆

𝑥∗𝑆 = 1

15.1 Set Cover Page 106

Theorem 15.1.4 Relaxed Complementary Slackness

Suppose 𝑥 ,𝑦 are feasible solutions of the primal and dual respectively and they satisfy the following conditions:

1. If 𝑥 𝑗 > 0 then 1
𝛼
· 𝑐 𝑗 ≤ 𝐴 𝑗𝑇𝑦 ≤ 𝑐 𝑗 where 𝛼 ≥ 1.

2. If 𝑦𝑖 > 0 then 𝑏𝑖 ≤ 𝐴𝑇𝑖 𝑥 ≤ 𝛽 · 𝑏𝑖 where 𝛽 ≥ 1.

Then
𝑐𝑇𝑥 ≤ 𝛼𝛽 · 𝑏𝑇𝑦 ≤ 𝛼𝛽 · 𝑐𝑇𝑥∗ = 𝛼𝛽 ·OPT

Proof: 𝑥 ,𝑦 are the feasible solutions of the primal and dual respectively. Then we have

𝑐𝑇𝑥 =

𝑚∑︁
𝑗=1

𝑐 𝑗𝑥 𝑗 ≤
𝑚∑︁
𝑗=1

(
𝛼𝐴 𝑗

𝑇
𝑦

)
𝑥 𝑗 = 𝛼

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝐴𝑖 𝑗𝑦𝑖𝑥 𝑗 = 𝛼

𝑛∑︁
𝑖=1

(
𝑚∑︁
𝑖=1

𝐴𝑖 𝑗𝑥 𝑗

)
𝑦𝑖 ≤ 𝛼

𝑚∑︁
𝑖=1

𝛽 · 𝑏𝑖𝑦𝑖 = 𝛼𝛽 · 𝑏𝑇𝑦

Hence we have 𝑐𝑇𝑥 ≤ 𝛼𝛽 · 𝑏𝑇𝑦 ≤ 𝛼𝛽 · 𝑐𝑇𝑥∗ = 𝛼𝛽 ·OPT. ■

To show a 𝑓 -approximation algorithm for set cover we will first find feasible solutions of primal, dual, 𝑥 ,𝑦 which
satisfies:

1. 𝑥 is integral.

2. 𝑥 satisfies the first condition of Relaxed Complementary Slackness with 𝛼 = 𝑓 .

Algorithm 55: Dual Fitting Algorithm for Set Cover
Input: U,S, 𝑐
Output: 𝑇 ⊆ [𝑚] such that

⋃
𝑖∈𝑇

𝑆𝑖 = U and
∑
𝑖∈𝑇

𝑐 (𝑆𝑖) is minimized

1 begin

2 InitializeU′ ←− U, 𝐶 ←− ∅
3 while ∃ 𝑢 ∈ U′ do
4 Increase 𝑦𝑢 until for some 𝑆 ∈ S with 𝑢 ∈ 𝑆 we have

∑
𝑢′∈𝑆

𝑦𝑢′ = 𝑐 (𝑆)

5 𝐶 ←− 𝐶 ∪
{
𝑆 ∈ S :

∑
𝑢∈𝑆

𝑦𝑢 = 𝑐 (𝑆)
}

6 for 𝑆 ∈ 𝐶 do

7 U′ ←− U′ \ 𝑆

8 return 𝐶

From 𝐶 we con construct 𝑥 by 𝑥𝑆 = 1 if 𝑆 ∈ 𝐶 and otherwise 𝑥𝑆 = 0 for all 𝑆 ∉ 𝐶 . Now we have the observations:

Observation. After the algorithm terminates we have:

1. At the beginning of the loop if 𝑢 ∈ U, 𝑦𝑢 = 0.

2. If 𝑥𝑆 = 1 and 𝑢 ∈ 𝑆 then 𝑦𝑢 is not increased.

3. 𝑥 ∈ {0, 1} |S | is integral.

Lemma 15.1.5

1. 𝑥 is feasible at the end of the algorithm.

2. 𝑦 is feasible at every iteration of the while loop

Page 107 Chapter 15 Approximation Algorithms using LP

Proof: The algorithm terminates whenU′ = ∅. That means all the elements of the universe are covered. Hence, the set
𝐶 output after the algorithm terminates is indeed a set cover. Hence, 𝑥 is a feasible solution.

At the start of the algorithm 𝑦 = 0 |U | . Hence, 𝑦 is feasible. Now suppose at any iteration 𝑦 is feasible. If the
algorithm goes through another iteration then there exists an element in U′ which is not covered. Let 𝑢 ∈ U′ which is
not covered. Hence, 𝑦𝑢 = 0. Since in the previous iteration 𝑦 was feasible we have

∑
𝑆 :𝑢∈𝑆

𝑦𝑢 ≤ 𝑐 (𝑆). Now we increase 𝑦𝑢
to the point we achieve the equality

∑
𝑢′∈𝑆

𝑦𝑢′ = 𝑐 (𝑆) for all 𝑆 ∈ S with 𝑢 ∈ 𝑆 . Therefore, even after updating 𝑦𝑢 all the

constraints of dual are satisfied. Hence, 𝑦 is a feasible solution after another iteration of the while loop. Therefore, 𝑦 is
feasible at every iteration of the while loop. ■

Lemma 15.1.6
𝑥 ,𝑦 satisfy the Relaxed Complementary Slackness conditions.

Proof: If for any 𝑆 ∈ S, 𝑥𝑆 > 0 then we have
∑
𝑢∈𝑆

𝑦𝑢 = 𝑐 (𝑆) by the construction of 𝐶 in the algorithm. Therefore,

𝑥𝑆 > 0 =⇒
∑︁
𝑢∈𝑆

𝑦𝑢 = 𝑐 (𝑆)

Hence 𝛼 = 1.
Now let for some 𝑢 ∈ U, 𝑦𝑢 > 0. Since 𝑓 is the maximum frequency of any element of the universe we have

𝑓 ≥ ∑
𝑆 :𝑢∈𝑆

𝑥𝑆 ≥ 1. Therefore,

𝑦𝑢 > 0 =⇒ 𝑓 ≥
∑︁
𝑆 :𝑢∈𝑆

𝑥𝑆 ≥ 1

Hence 𝛽 = 𝑓 . ■

Therefore, by Relaxed Complementary Slackness 𝐶 is an 𝑓 -approximate solution for the set cover problem. But
𝑓 -approximation is not good enough since one element can be in too many sets, and then it doesn’t give a good approxi-
mation. In the next subsection we will show how to get a better approximation ratio.

15.1.3 𝑂 (𝑛 log𝑛)-Approximation Algorithm through Randomized Rounding

Here we will show a randomized algorithm to get better approximation ratio. The idea is to use the LP we constructed
earlier and then randomly select the sets with probability proportional to the value of the corresponding variable in the
LP. This is known as randomized rounding.

Algorithm 56: 𝑂 (𝑛 log𝑛)-Approximate Algorithm
Input: U,S, 𝑐
Output: 𝑇 ⊆ [𝑚] such that

⋃
𝑖∈𝑇

𝑆𝑖 = U and
∑
𝑖∈𝑇

𝑐 (𝑆𝑖) is minimized

1 begin

2 𝑥 ←− 0 |S |
3 Let 𝑥∗ is the optimal solution of the LP for Set Cover problem
4 for 𝑆 ∈ S do

5 Set 𝑥𝑆 ←− 1 with probability 𝑥∗
𝑆
.

6 return 𝑥

From the construction of 𝑥 we have E

[∑
𝑆∈S

𝑐 (𝑆)𝑥𝑆
]
=

∑
𝑆∈S

𝑐 (𝑆)𝑥∗
𝑆
. Now suppose we fixed an element 𝑢 ∈ U. Then

P[𝑢 is not covered] =
∏
𝑆 :𝑢∈𝑆

P[𝑆 is not selected] =
∏
𝑆 :𝑢∈𝑆
(1 − 𝑥∗𝑆) ≤

∏
𝑆 :𝑢∈𝑆

𝑒−𝑥
∗
𝑆 = exp

[
−

∑︁
𝑆 :𝑢∈𝑆

𝑥∗𝑆

]
≤ 𝑒−1

15.1 Set Cover Page 108

Hence to reduce the probability of not covering an element ofU we repeat the algorithm multiple times. Hence, we have
the updated algorithm:

Algorithm 57: 𝑂 (𝑛 log𝑛)-Approximate Algorithm
Input: U,S, 𝑐
Output: 𝑇 ⊆ [𝑚] such that

⋃
𝑖∈𝑇

𝑆𝑖 = U and
∑
𝑖∈𝑇

𝑐 (𝑆𝑖) is minimized

1 begin

2 Let 𝑥∗ is the optimal solution of the LP for Set Cover problem
3 for 𝑖 ∈ [2 log𝑛] do
4 𝐶𝑖 ←− ∅
5 for 𝑆 ∈ S do

6 Put 𝑆 in 𝐶𝑖 with probability 𝑥∗
𝑆
.

7 𝐶 ←−
2 log𝑛⋃
𝑖=1

𝐶𝑖

8 return 𝐶

Again now we fix an element 𝑢 ∈ U. Now we will calculate the probability that 𝑢 is not covered in the union of
all 𝐶𝑖 ’s.

P[𝑢 is not covered by 𝐶] = P[𝑢 is not covered by 𝐶𝑖 for all 𝑖 ∈ [2 log𝑛]] ≤ 𝑒−2 log𝑛 =
1
𝑛2

Hence, the probability that 𝑒 is covered is at least 1 − 1
𝑛2 . Therefore,

P[∃ 𝑒 ∈ U is not covered by 𝐶] ≤
∑︁
𝑢∈U

1
𝑛2

=
1
𝑛

Hence, P[𝐶 is a set cover] ≥ 1 − 1
𝑛
. Now we have to bound the cost of 𝐶 . By Markov’s inequality we have

P

[
𝑐 (𝐶) ≥ 6 log𝑛

∑︁
𝑆∈S

𝑐 (𝑆)𝑥∗𝑆

]
≤ 1

3

P

[
𝐶 is not a set cover OR cost of C ≥ 6 log𝑛

∑︁
𝑆∈S

𝑐 (𝑆)𝑥∗𝑆

]
≤ 1
𝑛
+ 13 ≤

1
2

Therefore

P

[
𝐶 is set cover AND 𝑐 (𝑆) ≤ 6 log𝑛

∑︁
𝑆∈S

𝑐 (𝑆)𝑥∗𝑆

]
≥ 1

2

Hence with probability at least 1
2 we have a set cover 𝐶 such that 𝑐 (𝐶) ≤ 6 log𝑛

∑
𝑆∈S

𝑐 (𝑆)𝑥∗
𝑆
which gives us an 𝑂 (log𝑛)-

approximation algorithm for Set Cover problem.

Note:-

𝑂 (log𝑛)-approximatiobn is also the best we can do for set cover. Doing better than that is NP-hard.

Page 109 Chapter 15 Approximation Algorithms using LP

15.2 Makespan Minimization

Makespan
Input: M: Set of𝑚 machines

J : Set of 𝑛 jobs
𝑃 ∈ N𝑚×𝑛 : Matrix where 𝑃𝑖 𝑗 is the time taken by machine 𝑖 to complete job 𝑗 .

Question: Given a set of machines𝑀 , set of jobs J and the matrix of time taken by 𝑖𝑡ℎ machine to complete 𝑗𝑡ℎ
job find an assignment 𝜎 : J →M of jobs to machines to minimize the makespan 𝑆𝜎 = max{𝑙𝑖 : 𝑖 ∈
M} where 𝑙𝑖 =

∑
𝑗 :𝜎 (𝑗)=𝑖

𝑃𝑖 𝑗 i.e. time taken by machine 𝑖 to complete all jobs assigned by 𝜎

Theorem 15.2.1
Makespan problem is weakly NP-hard by reduction from subset-sum.

Note:-

Weakly NP-hard means there exists a pseudo polynomial time algorithm i.e. if all parameters are polynomially large
the algorithm can solve the problem in polynomial time.

Theorem 15.2.2
It is NP-hard to approximate within a factor of 1.5

Here we will show a 2-approximate solution of makespan optimization. First let’s construct the LP for makespan
optimization.

15.2.1 LP Construction

We’ll use the variable 𝑥𝑖 𝑗 as an indicator for 𝑗𝑡ℎ job assigned to 𝑖𝑡ℎ machine. Then here is the LP:

minimize 𝑇

subject to
∑︁
𝑖∈M

𝑥𝑖 𝑗 ≥ 1 ∀ 𝑗 ∈ J ,∑︁
𝑗∈J

𝑃𝑖 𝑗𝑥 𝑗 ≤ 𝑇 ∀ 𝑖 ∈ M,

𝑥𝑖 𝑗 ≥ 0 ∀ 𝑖 ∈ M, 𝑗 ∈ J

So here the first constrain basically says that every job assigned to some machine. The second constraint says that for
every machine the total time taken by the machine to complete the jobs should be at most the makespan where𝑇 denotes
the makespan. But this LP is not good enough. Consider the following example where there is only one job and 𝑃𝑖1 = 𝑚
then OPT𝐿𝑃 = 1 by setting 𝑥𝑖1 = 1

𝑚
where as actually the optimal makespan is𝑚. Hence this LP will not work. We have

to strengthen the LP.
So now assume we already know the optimal makespan𝑇 . Then if any 𝑃𝑖 𝑗 > 𝑇 then we know that we can’t assign

the 𝑗𝑡ℎ job to 𝑖𝑡ℎ machine. So now we have the new updated LP:

minimize 0

subject to
∑︁
𝑖∈M

𝑥𝑖 𝑗 ≥ 1 ∀ 𝑗 ∈ J ,∑︁
𝑗∈J

𝑃𝑖 𝑗𝑥 𝑗 ≤ 𝑇 ∀ 𝑖 ∈ M,

𝑥𝑖 𝑗 ≥ 0 ∀ 𝑖 ∈ M, 𝑗 ∈ J ,
𝑥𝑖 𝑗 = 0 If 𝑃𝑖 𝑗 > 𝑇 , ∀ 𝑖 ∈ M 𝑗 ∈ J

15.2 Makespan Minimization Page 110

This basically checks the feasibility for a specific 𝑇 . Hence, now we can do a binary search over 𝑇 ’s to find the smallest
feasible 𝑇 .

Theorem 15.2.3
By binary search 𝑂 (log𝑛) round we can find the smallest 𝑇 such that 𝐿𝑃 (𝑇) is feasible.

Now suppose we have the smallest feasible time. Let’s call this 𝑇 . Then 𝑇 ≤ OPT𝐼 . Let 𝑥 is the basic feasible
solution for 𝑇 . We will now show a polynomial time algorithm to obtain an integral assignment with makespan = 2𝑇 .

15.2.2 Rounding to Get 2-Approximate Solution

Now we have the smallest feasible time 𝑇 and the basic feasible solution for that 𝑥 which is also an extreme point. Now
we can think 𝑥 as a weighted bipartite graph between J andM with fractional weights i.e. one job assigned to multiple
machines fractionally. Let the graph is 𝐺 = (𝐿 ⊔ 𝑅,𝐸) where 𝑒 = (𝑖 , 𝑗) ∈ 𝐸, if 𝑥𝑖 𝑗 > 0 with 𝑤 (𝑖 , 𝑗) = 𝑥𝑖 𝑗 . Hence, we also
have for all (𝑖 , 𝑗) ∈ 𝐸, 𝑥𝑖 𝑗 ≤ 𝑇 .

Lemma 15.2.4
In 𝑥 at least 𝑛 −𝑚 jobs are assigned integrally.

Proof: There are total 𝑛 +𝑚 + 𝑛𝑚 constraints in the LP. But the LP is 𝑛𝑚 dimensional. Therefore at 𝑥 , 𝑛𝑚 constraints
are tight. So at most𝑚 + 𝑛 constraints of the type 𝑥𝑖 𝑗 ≥ 0 are not tight i.e. at most𝑚 + 𝑛 many 𝑥𝑖 𝑗 are not zero. Suppose
𝛼 jobs are set integrally and 𝛽 fractionally. So for each of the 𝛽 jobs it is assigned to at least 2 machines. Now each of the
𝑥𝑖 𝑗 corresponds to an edge of the graph. Therefore we have the following two equations:

𝛼 + 𝛽 = 𝑛, 𝛼 + 2𝛽 ≤ 𝑚 +𝑛 =⇒ 𝛽 ≤ 𝑚 =⇒ 𝛼 ≥ 𝑛 −𝑚

Therefore there at least 𝑛 −𝑚 jobs which are assigned integrally. ■

Lemma 15.2.5
In every connected component of 𝐺 , #edges ≤ #vertices.

Proof: In the graph𝐺 , as we showed earlier at most𝑚 +𝑛 constraints of the type 𝑥𝑖 𝑗 ≥ 0 are not tight i.e. at most𝑚 +𝑛
many 𝑥𝑖 𝑗 are not zero. Hence

#edges = |{𝑥𝑖 𝑗 | 𝑥𝑖 𝑗 > 0}| ≤ 𝑚 +𝑛 = #vertices
Suppose𝐶 is a connected component. Let J𝐶 ,M𝐶 be the jobs and machines of𝐶 and 𝑥 |𝐶 is 𝑥 restricted to𝐶 . Then

𝑥 |𝐶 is a basic feasible solution for the instance restricted toM𝐶 , J𝐶 with 𝑇 being a feasible time. If 𝑥 |𝐶 was not feasible
forM𝐶 and J𝐶 then there exists 𝑦𝐶 and 𝑧𝐶 with 𝑦𝐶 ≠ 𝑧𝐶 such that 𝑥 |𝐶 = 𝜆𝑦𝐶 + (1 − 𝜆)𝑧𝐶 where 𝜆 ∈ (0, 1). Then

𝑥 = 𝜆
(
𝑦𝐶 ,𝑥 |𝐶

)
+ (1 − 𝜆)

(
𝑧𝐶 ,𝑥 |𝐶

)
Then 𝑥 can not be an extreme point. And therefore by the same logic as above we have in the connected component
#edges ≤ #vertices. Since 𝐶 is arbitrary connected component this is true for every connected component. ■

Now we create a feasible solution 𝑥 for 2𝑇 . We first initiate 𝑥 setting all 0’s. We fix a connected component𝐶 in𝐺 .
Furthermore, we call a vertex in J𝐶 ∪M𝐶 leaf if it has degree 1. If for any job 𝑗 ∈ J𝐶 it is assigned integrally in 𝑥 |𝐶 then
𝑗 is a leaf. So we remove the node 𝑗 and assign the job to the machine 𝑖 ∈ M𝐶 , 𝑗 is connected to. This also removes the
edge incident on 𝑗 .

After doing this we still have #edges ≤ #vertices because we basically removed same number of jobs and edges
from the graph. But now every job is connected to at least two machines.

If a machine 𝑖 ∈ M𝐶 is a leaf, let the edge incident on 𝑖 is (𝑖 , 𝑗) then we remove both 𝑖 , 𝑗 from the graph and assign
the job 𝑗 to machine 𝑖 i.e. basically we set 𝑥𝑖 𝑗 = 1. So the load added to 𝑖𝑡ℎ machine is at most 𝑇 . We do this for every leaf
machine.

Now the graph has no leaves remaining. Since the graph is bipartite it is an even cycle. So find a matching of jobs
to machines in the cycle and assign the jobs accordingly i.e. if𝑀 is a matching and 𝑒 = (𝑖 , 𝑗) ∈ 𝑀 then set 𝑥𝑖 𝑗 = 1.

Page 111 Chapter 15 Approximation Algorithms using LP

So we have the following final algorithm:

Algorithm 58: Makespan 2-Approximate Algorithm
Input:M,J , 𝑃 where |M| =𝑚, |J | = 𝑛 and 𝑃 ∈ Z𝑚×𝑛

0
Output: 𝜎 : J →M assignment of jobs to machines to minimize max{𝑙𝑖 : 𝑖 ∈ M} where 𝑙𝑖 =

∑
𝑗 :𝜎 (𝑗)=𝑖

𝑃𝑖 𝑗 i.e. time

taken by machine 𝑖 to complete all jobs assigned by 𝜎
1 begin

2 Do binary search to find the minimum feasible 𝑇 for the LP.
3 Let 𝑇 is the minimum feasible time and 𝑥 is the basic feasible solution.
4 Construct the weighted graph 𝐺 = (M ⊔ J ,𝐸) where (𝑖 , 𝑗) ∈ 𝐸 if 𝑥𝑖 𝑗 > 0 and𝑤 (𝑖 , 𝑗) = 𝑥𝑖 ,𝑗 .
5 C ←− Connected Components of 𝐺 .
6 for 𝐶 ∈ C do

7 while ∃ 𝑗 ∈ J𝐶 such that deg(𝑗) = 1 do
8 Let (𝑖 , 𝑗) ∈ 𝐸
9 𝜎 (𝑗) ←− 𝑖

10 J ←− J \ { 𝑗}
11 while ∃ 𝑖 ∈ M𝐶 such that deg(𝑖) = 1 do
12 Let (𝑖 , 𝑗) ∈ 𝐸
13 𝜎 (𝑗) ←− 𝑖
14 M ←−M \ {𝑖}
15 J ←− J \ { 𝑗}
16 𝑀 ←−BP-Maximum-Matching. 𝑀 will be a perfect matching.
17 for 𝑒 = (𝑖 , 𝑗) ∈ 𝑀 do

18 𝜎 (𝑗) ←− 𝑖

19 return 𝜎

This algorithmworks in polynomial time since solving the LP, constructing theweighted graph and finding the con-
nected components can be done in polynomial time and then for every component the while loops and finding matching
can also be done in polynomial time. So the algorithm is polynomial time.

This algorithm gives a 2-approximate solution because each machine 𝑖 is assigned the jobs it is set integrally and
another job 𝑗 if 𝑥𝑖 𝑗 > 0.

Chapter 16
P, NP and Reductions

Almost all the algorithms we have studied thus far have been polynomial time algorithms i.e. on inputs of size 𝑛, their
worst-case running time is𝑂 (𝑛𝑘) for some constant 𝑘 . A natural question to ask is whether all problems can be solved in
polynomial time. The answer is no.

There are problems that can be solved but not in polynomial time and there are problemswhich can not be solved via
an algorithm. To discuss problems in general think of computational tasks as language recognition problem. A language
is a subset of {0, 1}∗. For example:

𝐿conn = {𝑥 ∈ {0, 1}∗ | 𝑥 represents a connected graph}

So main problem we want to think about is to decide whether a given string is in the language or not. These problems are
also called decision problems.

Definition 16.1: Decision Problems

Given a language 𝐿 ⊆ {0, 1}∗ and a string 𝑥 ∈ {0, 1}∗ decide whether 𝑥 ∈ 𝐿 or not.

An algorithm A solves this problem if 𝑥 ∈ 𝐿 ⇐⇒ A(𝑥) = 1. Time complexity of A: 𝑇A (𝑛) is the maximum
running time ofA on any string 𝑥 of length 𝑛. Since we can work over any set of alphabets and alphabets can be encoded
into binary we will say languages are subset of Σ∗ where Σ is the finite set of alphabets.

16.1 Introduction to Complexity Classes

Depending on time, space and some other resources based on how much they are used we divide the computational
problems into several sets. We call these sets as complexity classes.

Definition 16.1.1: Polynomial Running Time

A language 𝐿 ⊆ Σ∗ has a polynomial-time algorithm if there exists A that solves 𝐿 and 𝑇A (𝑛) = 𝑂 (𝑛𝑘) for some
constant 𝑘 .

Now we introduce our first complexity class now. This class is called P.

P B {𝐿 ⊆ Σ∗ | there exists a polynomial time algorithm that decides 𝐿}

Till now all the algorithms we have studied are in P.

Question 16.1

What about 𝐿sat,𝐿3col,𝐿2sat,𝐿conn?

We know 𝐿conn ∈ P since we can run a DFS to check if all the vertex is reachable from a vertex. Also we know
𝐿2sat ∈ P. For other languages we don’t know if they are in P. But these problems have another noticable nature. Given

Page 113 Chapter 16 P, NP and Reductions

a potential solution for the problem one can check if that is indeed a solution of the problem or not in polynomial-time.
Let’s abstract this notion:

Definition 16.1.2: Short Certificate of Membership

A language have a short certificate of membership if there exists an algorithmA that runs in polynomial time and

∀ 𝑥 ∈ 𝐿, ∃ 𝑦 ∈ poly(|𝑥 |), A(𝑥 ,𝑦) = 1
∀ 𝑥 ∉ 𝐿, ∀ 𝑦 ∈ poly(|𝑥 |), A(𝑥 ,𝑦) = 0

What are the certificates or above-mentioned problems.

• 𝐿sat: Assignment of the variables. Then we can verify if every clause is satisfied

• 𝐿3col: Coloring of the edges. We can verify if all the edges follows the coloring constraint.

• 𝐿conn: A spanning tree. We can verify if every vertex is present there.

Now we introduce another complexity class called NP.

NP B {𝐿 ⊆ Σ∗ | 𝐿 has a short certificate of membership}

For NP we call the algorithm to check for the certificate verifier. Another way to think about the class NP is to extend the
computer to make “guesses” or exists in multiple states simultaneously. This is known as non-determinism. Then NP is
the class of languages decided by a polynomial time non-deterministic Turing machine. For example a non-deterministic
algorithm for 3SAT is

• Make a guess for the assignment for each variable.

• If 𝜙 is satisfied return yes else return no.

Naturally any problem which is in P has a short certificate.

Theorem 16.1.1
P ⊆ NP.

Another complexity class which come associated with NP is coNP.

coNP B NP

i.e. the complement set of NP.

Observation 16.1. P = P

Theorem 16.1.2
P ⊆ coNP

Apart from these two we don’t know any relation between NP and coNP whether they are equal or not.

16.2 Reductions

Question 16.2

What does it mean for a problem to be at least as hard as another?

To relate hardness of one problem to another we introduce the notion of reductions. There are many reductions.
We will only focus on polynomial-time many-one karp reduction.

16.3 Some other NP-complete Languages Page 114

Definition 16.2.1: Many-One Karp Reduction

𝐿1,𝐿2 ⊆ Σ∗ are two languages. 𝐿1 is reducible to 𝐿2 under polynomial time many-one karp reduction if and only
if there exists a polynomial time computable function 𝑓 : Σ∗ → Σ∗ such that ∀ 𝑥 ∈ Σ∗

𝑥 ∈ 𝐿1 ⇐⇒ 𝑓 (𝑥) ∈ 𝐿2

and we denote it by 𝐿1 ≤poly𝑚 𝐿2.

We call a language 𝐿 to be NP-hard if for every language 𝐿′ ∈ NP, 𝐿′ ≤poly𝑚 𝐿. And 𝐿 is called NP-complete if 𝐿 ∈ NP
and 𝐿 is NP-hard.

Theorem 16.2.1 Cook’s Theorem

3SAT is NP-complete.

Corollary 16.2.2
SAT is coNP-complete.

16.3 Some other NP-complete Languages

We will now show 3 other problems which are also NP-complete. We will show the following three problems to be
NP-complete

• IndSet B {(𝐺 ,𝑘) | Graph 𝐺 has an independent set of size at least 𝑘}

• VC B {(𝐺 ,𝑘) | Graph 𝐺 has a vertex cover of size at least 𝑘}

• SubsetSum B
{
(𝑠1, . . . , 𝑠𝑡 ,𝑇) | ∃ 𝑋 ⊆ [𝑡],

∑
𝑖∈𝑋

𝑠𝑖 = 𝑇

}
Theorem 16.3.1
IndSet is NP-complete.

Proof: It is natural to see that IndSet ∈ NP. Furthermore, we will show a reduction from 3SAT to IndSet. On the input
of 𝜙 of 3SAT we want to find a (𝐺 ,𝑘) instance such that

𝜙 is satisfiable ⇐⇒ 𝐺 has an independent set of size ≥ 𝑘

Let 𝜙 has𝑚 clauses on 𝑛 variables. We build a graph 𝐺 with 3𝑚 vertices with a triangle for each clause. Each vertex in a
triangle corresponds to a literal. Add edge between 𝑥𝑖 and 𝑥𝑖 for all variables 𝑥𝑖 .

Now with this construction we have ensured that for any variable 𝑥𝑖 if the literal 𝑥𝑖 is in the independent set then
𝑥𝑖 is not in the independent set and vice versa. For each clause one vertex from each triangle is in the independent set. So
the target independent set size is of size 𝑛.

Now if there is a satisfying assignment for 𝜙 then we can pick the corresponding vertices representing the literals
which are set true and this will constitute an independent set. Similarly, if there is an independent set of size 𝑛 in 𝐺 then
for each variable we have picked only one literal and from each triangle we have picked only one, so this corresponds to
a satisfying assignment. ■

Theorem 16.3.2
VC is NP-complete.

Page 115 Chapter 16 P, NP and Reductions

Proof: It is natural to see that VC ∈ NP. We will show a reduction from IndSet to VC for NP-hardness of VC. Notice
that for any 𝑆 ⊆ 𝑉 , 𝑆 is a vertex cover in 𝐺 if and only if 𝑉 \ 𝑆 is an independent set in 𝐺 . Therefore, from the input
(𝐺 ,𝐾) we create the (𝐺 ,𝑛 − 𝑘) and this way we found a bijection between independent sets and vertex cover. Hence, VC
is NP-complete. ■

Theorem 16.3.3
SubsetSum is NP-complete.

Proof: Again it is very easy to see that SubsetSum ∈ NP. Like IndSet for this problem we will show a reduction from
3SAT. Let we are given a boolean formula 𝜙 with 𝑛 variables and𝑚 clauses.

Now each 𝑠𝑖 , 𝑇 are given by 𝑛 +𝑚 long integer. First 𝑛 positions are indexed by variables and last𝑚 positions are
indexed by the clauses. Each variable 𝑥𝑖 corresponds to 2 integers, 𝑠𝑥𝑖 and 𝑠𝑥𝑖 , one for each literal. For each literal 𝑥𝑖 , 𝑠𝑥𝑖
defined as the number which has 1 at the position of corresponding variable and 1’s at the position of clauses in which
that literal is present. Now each clause 𝑐𝑖 corresponds to 2 integers, 𝑠𝑐𝑖 , 𝑠𝑐′𝑖 . Both 𝑠𝑐𝑖 , 𝑠𝑐′𝑖 has a 1 in the corresponding clause
position. Now 𝑇 is defined to be the integer where it has 1’s in first 𝑛 positions and 3’s in the last𝑚 positions.

Now notice if there is a satisfying assignment then we pick those numbers which corresponds to the literals which
are set to be two. Their sum matches with the first 𝑛 positions of𝑇 . Now for the last𝑚 bits we pick the necessary number
of clause numbers to adjust. Similarly, if there is a subset sum then we set the corresponding literals to be true. Since the
first 𝑛 positions of 𝑇 are 1 all the variables are assigned to some value. Hence, we get SubsetSum is NP-complete. ■

Chapter 17
Bibliography

[Ide16] Martin Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps. arXiv

preprint, 2016.

[LSW98] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial algorithm for
matrix scaling and approximate permanents. In Proceedings of the thirtieth annual ACM symposium on Theory

of computing - STOC ’98, STOC ’98, pages 644–652. ACM Press, 1998.

	1 Finding Closest Pair of Points
	1.1 Naive Algorithm
	1.2 Divide and Conquer Algorithm
	1.2.1 Divide
	1.2.2 Conquer
	1.2.3 Combine
	1.2.4 Pseudocode and Time Complexity

	1.3 Improved Algorithm for O(nlogn) Runtime
	1.4 Removing the Assumption

	2 Median Finding in Linear Time
	2.1 Naive Algorithm
	2.2 Linear Time Algorithm
	2.2.1 Solve Rank-Find using Approximate-Split
	2.2.2 Solve Approximate-Split using Rank-Find
	2.2.3 Pseudocode and Time Complexity

	3 Polynomial Multiplication
	3.1 Naive Algorithm
	3.2 Strassen-Schönhage Algorithm
	3.2.1 Finding Evaluations of Multiplied Polynomial
	3.2.2 Evaluation of a Polynomial at Points
	3.2.3 Interpolation from Evaluations at Roots of Unity

	4 Dynamic Programming
	4.1 Longest Increasing Subsequence
	4.1.1 O(n2) Time Algorithm
	4.1.2 O(logn) Time Algorithm

	4.2 Optimal Binary Search Tree

	5 Greedy Algorithm
	5.1 Maximal Matching
	5.2 Huffman Encoding
	5.2.1 Optimal Binary Encoding Tree Properties
	5.2.2 Algorithm

	5.3 Matroids
	5.3.1 Examples of Matroid
	5.3.2 Finding Max Weight Base
	5.3.3 Job Selection with Penalties

	6 Dijkstra Algorithm with Data Structures
	6.1 Dijkstra Algorithm
	6.2 Data Structure 1: Linear Array
	6.3 Data Structure 2: Min Heap
	6.3.1 Extracting the Minimum
	6.3.2 Decreasing Key of a Node
	6.3.3 Time Complexity Analysis of Dijkstra

	6.4 Amortized Analysis
	6.5 Data Structure 3: Fibonacci Heap
	6.5.1 Inserting Node
	6.5.2 Union of Fibonacci Heaps
	6.5.3 Extracting the Minimum Node
	6.5.4 Decreasing Key of a Node
	6.5.5 Bounding the Maximum Degree
	6.5.6 Time Complexity Analysis of Dijkstra

	7 Kruskal's Algorithm with Data Structures
	7.1 Kruskal's Algorithm
	7.2 Data Structure 1: Linear Array
	7.3 Data Structure 2: Left Child Right Siblings Tree
	7.3.1 Construction
	7.3.2 LCRS-Union Function
	7.3.3 Amortized analysis of LCRS-Union
	7.3.4 Time Complexity Analysis of Kruskal

	7.4 Data Structure 3: Union Find
	7.4.1 Find Operation
	7.4.2 Union Operation
	7.4.3 Analyzing the Union-Find Data-Structure

	8 Red Black Tree Data Structure
	8.1 Rotation
	8.2 Insertion
	8.3 Deletion

	9 Maximum Flow
	9.1 Flow
	9.2 Ford-Fulkerson Algorithm
	9.2.1 Max Flow Min Cut
	9.2.2 Edmonds-Karp Algorithm

	9.3 Preflow-Push/Push-Relabel Algorithm

	10 Randomized Algorithm
	10.1 Estimated Binary Search Tree Height
	10.2 Solving 2-SAT

	11 Derandomization
	11.1 Conditional Expectation
	11.2 Max-SAT
	11.2.1 Randomized Algorithm
	11.2.2 Derandomization

	11.3 Set Balancing
	11.3.1 Randomized Algorithm
	11.3.2 Derandomization
	11.3.3 Using Pessimistic Estimator to Derandomize

	12 Global Min Cut
	12.1 Naive Algorithm
	12.2 Karger's GMC Algorithm
	12.3 Karger-Stein Algorithm

	13 Matching
	13.1 Bipartite Matching
	13.1.1 Using Max Flow
	13.1.2 Using Augmenting Paths
	13.1.3 Using Matrix Scaling

	13.2 Matching in General Graphs
	13.2.1 Flowers and Blossoms
	13.2.2 Shrinking Blossoms
	13.2.3 Algorithm for Maximum Matching
	13.2.4 Tutte-Berge Theorem

	14 Linear Programming
	14.1 Introduction
	14.2 Geometry of LP
	14.3 LP Integrality
	14.3.1 Totally Unimodular Matrix
	14.3.2 Integrality of Some Well-Known Polytopes

	14.4 Duality
	14.4.1 Dualization of LP
	14.4.2 Weak and Strong Duality
	14.4.3 Complementary Slackness
	14.4.4 Max-Flow Min-Cut Theorem
	14.4.5 Maximum Bipartite Matching minimum Vertex Cover

	15 Approximation Algorithms using LP
	15.1 Set Cover
	15.1.1 Frequency f-Approximation Algorithm
	15.1.2 Frequency f-Approximation Algorithm through Dual Fitting
	15.1.3 O(nlogn)-Approximation Algorithm through Randomized Rounding

	15.2 Makespan Minimization
	15.2.1 LP Construction
	15.2.2 Rounding to Get 2-Approximate Solution

	16 P, NP and Reductions
	16.1 Introduction to Complexity Classes
	16.2 Reductions
	16.3 Some other NP-complete Languages

	17 Bibliography

