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Introduction

Definition (Travelling Salesman)

GivenagraphG = (V,E), S C Vand weights w : E — R find minimum weight cycle
which visits every vertex of S exactly once.

We will focuson S = V.
e We know Traveling Salesman Problem is NP-complete.

e In[Yannkakis, 1988, STOC] he proved every symmetric LP for the TSP has
expnential size.

e Here we will show TSP admits no polynomial-size LP.

e This proof also shows unconditional super-polynomial lower bound on the
number of inequalities.

e Therefore itis impossible to prove P = NP by means of a polynomial size LP.
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Extension Complexity

Extension complexity of P is the minimum size EF of P where size of a polytope is
the number inequalities. We denote by xc(P).

Lemma

Let P,Q and F be polytopes. Then the following holds:
(i) If Fis an extension of Pthen xc(F) > xc(P).
(i) If Fis a face of Q then xc(Q) > xc(F).



Slack Matrix

Definition

Let P = {x € R" | Ax < b} = conv(V) is a polytope with A € R"*? b € R™ and
VCRY LetV={vy,...,vp}. ThenS € RG™" is called the slack matrix of P wrt
Ax < b and Vwhere

S(l,j) = b,‘ —A,‘\/j

Some times we may refer to the submatrix of slack matrix induced by rows
corresponding to facets as the slack matrix of P denoted by S(P).
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Some Polytopes

e TSP(n) is the traveling salesman polytope for K, = (Vj,, En). LetC C E,
denotes a tour of K,. Then XC denotes the characteristic vector of C. Then

TSP(n) = conv{x® | C C E,is atour of K}

e GivenG = (V,E), forany S C V, x° denote characteristic vector of S. Then the
independent set polytope

IND(G) := conv{x® | Sis independent set of G}
e The correlation polytope COR(n) is

COR(n) = conv{bb" | b € {0,1}"}
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Proof Flow

xc(TSP(n)) = 22(n%)

Step 1: First we will prove xc(COR(n)) = 2"

Step 2: Foralln, 3 graph G, with n vertices such that xc(IND(Gp)) > xc(COR(n"))
where n’ = ns for somed > 1.

Step 3: Forany n-vertex graph G, IND(G) is linear projection of a face of TSP(k)
where k = 0(n?).
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Covering Bound of Matrix with Rectangles

Let M € {0, 1}"*" matrix.

A monochromatic rectangle R in M means a submatrix N of M whose all
entries are 1.

A collection of rectangles C covers M if their union covers all the nonzero
entries of M.

IC| is called a covering bound of M. Cov(X) = min{|C|: C covers M}
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Covering Bound of Simple Matrix

Consider A matrix X of dimension 2" x 2" where the rows and columns are
indexed by strings from {0,1}". Let X(a,b) = (1 — a’b)? where a,b € {0,1}".

Theorem (Yannkakis, 1988, STOC)

Every monochromatic rectangle cover of suppmat(X) has size 24" j.e.

Cov(suppmat(X)) > 2%
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Non-negative Factorization

e Arankrnon-negative factorization of a matrix M is a factorization M = TU
where T, U are non-negative matrix with r columns and r rows respectively.

e Non-negative rank of M is the minimum rank of a non-negative factorization
of M. Denote it by rank (M).

Theorem (Factorization Theorem)
For a polytope P = {x | Ax < b} where S is the slack matrix of P the following are
equivalent:
(i) S has non-negative rank at most r.
(i) P has an extension of size at most r.
(iii) P has an EF of size at most r.

We get xc(P) = rank (S).



Factorization and Covering Bound Relation

For any matrix M € R™*" let suppmat(M) € {0,1}™*" is a matrix where the (i,)"
elementis 1if M(i,j) # 0 and otherwise 0.

Theorem (Yannkakis, 1988, STOC)

Let M be any matrix with non-negative real entries. Then

rank, (M) > Cov(suppmat(M))
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Polytope equations

Consider the inner product of two matrices A, B € R™*" be (A, B) = Tr(A’B)
Foralla € {0,1}" there are some b € {0,1}" such that

(2diag(a) —aa’,bb’) =1

1 — (diag(a) —aa’,bb") =1 — 2(diag(a), bb") + (aa’,bb")
=1-2a"b+(a'h)? = (1 —a'b)?

Because of above prove for allb € COR(n), foralla € {0,1}", (2diag(a) —
aa’, bb’) < 1.

Hence let A, b be such that COR(n) = {x | Ax < b} where (A, b) includes these
inequities. So the slack matrix S of COR(n) contains X.
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Lower Bound

Let S is the slack matrix of COR(n). Then S contains the matrix X.
e By Factorization Theorem xc(COR(n)) = rank(S).
e Since Xis submatrix of S we have rank, (S) > rank, (X).

e By Covering-Factorization Relation rank, (X) > Cov(suppmat(X)) > 29",

xc(COR(n)) = 2%,
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New Graph Construction

Let fixan n. Now consider the complete graph K,,. Now we will construct a graph
Hn = (Vo En) with O(n?) vertices.
e EFachvertexi € K, thereisa 2-clique on /',7 inHn.
e Eachedge (i,)) € Ky
e Thereis a4-clique on the vertices {/'j,fj, i, ﬁ}
e The additional edges

(i, 1) (7, ) G i) U i)

(1, 1f) (1, 1f) U, i) G, ij)
Let Fis the face of IND(H,) containing independent sets which have exactly one
vertex from each vertex-clique and one vertex from each edge-clique
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COR(n) Inside Independent Set Polytope

Take the linear map 7 : R — R"*". Let w(x) = y. Then

Yii = Yji =X

e Sisindependent set of H,. x° is the characteristic vector.

e Defineb € {0,1}" whereb; = 1iffii € S otherwise 0
Observe: Foredge (i,j) € Kn, ij € S < i, Jj € S.
Then (x°) = bb'. So w(F) C COR(n)

e be{0,1}". Consider bb'.

e Scontainsavertexiiif bj = 1and S contains iif b; = 0.
x° € F. Son(x®) =bb". So

7(F) = COR(n)

So COR(n) is aface of IND(H,).



Lower Bound

Above Hy, has 2n + (3) vertices.



Lower Bound

Above Hy, has 2n + (3) vertices.

e Forany n consider p to be the maximum such that 2p + (§) < n.



Lower Bound

Above Hy, has 2n + (3) vertices.
e Forany n consider p to be the maximum such that 2p + (§) < n.

e Take the graph Hp and add n — 2p — (5) isolated vertices to construct Gj,.



Lower Bound

Above Hy, has 2n + (3) vertices.
e Forany n consider p to be the maximum such that 2p + (§) < n.
e Take the graph Hp and add n — 2p — (5) isolated vertices to construct Gj,.

e IND(Hp) isomorphic to IND(Gp)



Lower Bound

Above Hy, has 2n + (3) vertices.
e Forany n consider p to be the maximum such that 2p + (§) < n.
e Take the graph Hp and add n — 2p — (§) isolated vertices to construct G.
e IND(Hp) isomorphic to IND(Gp)
o(n?
xc(IND(Gp)) = xc(IND(Hp)) > xc(COR(p)) > 2%P) =2 (n?)

Theorem

1
For all n € N there exists graph G, xc(IND(G)) = 29(n7)
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Theorem (Yannkakis, 1988, STOC)

Every p-vertex graph G, IND(G) is the linear projection of a face of TSP(n) with
n = 0(p?).

Therefore
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