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Introduction

Definition (Travelling Salesman)

Given a graph G = (V,E), S ⊆ V and weightsw : E → R findminimumweight cycle
which visits every vertex of S exactly once.

We will focus on S = V.
• We know Traveling Salesman Problem is NP-complete.
• In [Yannkakis, 1988, STOC] he proved every symmetric LP for the TSP has
expnential size.

• Here we will show TSP admits no polynomial-size LP.
• This proof also shows unconditional super-polynomial lower bound on the
number of inequalities.

• Therefore it is impossible to prove P = NP bymeans of a polynomial size LP.
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Preliminaries



Definitions

Let P = {x ∈ Rn | Ax ≤ b} = conv(V) is a polytope with A ∈ Rm×d,b ∈ Rm and
V ⊆ Rd. We will consider V as the characteristic vector for all hamiltonian paths.

Definition (Extension Polytope)

An extension of P is a polytope Q ⊆ Rd+e such that there is a linear map
π : Rd+e → Rd such that π(Q) = P.

Definition (Extended Formula)

An EF Q is an extension of P is a linear system in variable s (x, y) such that

x ∈ P ⇐⇒ ∃ y (x, y) ∈ Q
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Extension Complexity

Extension complexity of P is the minimum size EF of Pwhere size of a polytope is
the number inequalities. We denote by xc(P).

Lemma
Let P,Q and F be polytopes. Then the following holds:
(i) If F is an extension of P then xc(F) ≥ xc(P).
(ii) If F is a face of Q then xc(Q) ≥ xc(F).
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Slack Matrix

Definition
Let P = {x ∈ Rn | Ax ≤ b} = conv(V) is a polytope with A ∈ Rm×d,b ∈ Rm and
V ⊆ Rd. Let V = {v1, . . . , vn}. Then S ∈ Rm×n

0 is called the slack matrix of Pwrt
Ax ≤ b and Vwhere

S(i, j) = bi − Aivj

Some times wemay refer to the submatrix of slack matrix induced by rows
corresponding to facets as the slack matrix of P denoted by S(P).
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Some Polytopes

• TSP(n) is the traveling salesman polytope for Kn = (Vn,En). Let C ⊆ En
denotes a tour of Kn. Then χC denotes the characteristic vector of C. Then

TSP(n) := conv{χC | C ⊆ En is a tour of Kn}

• Given G = (V,E), for any S ⊆ V, χS denote characteristic vector of S. Then the
independent set polytope

IND(G) := conv{χS | S is independent set of G}

• The correlation polytope COR(n) is

COR(n) := conv{bbT | b ∈ {0, 1}n}
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Proof Flow

Theorem

xc(TSP(n)) = 2
Ω
(
n
1
4

)

Step 1: First we will prove xc(COR(n)) = 2Ω(n)

Step 2: For all n, ∃ graph Gn with n vertices such that xc(IND(Gn)) ≥ xc(COR(n′))
where n′ = n

1
d for some d > 1.

Step 3: For any n-vertex graph G, IND(G) is linear projection of a face of TSP(k)
where k = O(n2).
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Covering Bound of Matrix and Non-negative
Factorization



Covering Bound of Matrix with Rectangles

• LetM ∈ {0, 1}n×n matrix.

• Amonochromatic rectangle R inMmeans a submatrixN ofMwhose all
entries are 1.

• A collection of rectangles C coversM if their union covers all the nonzero
entries ofM.

• |C| is called a covering bound ofM. Cov(X) = min{|C| : C coversM}

10/23



Covering Bound of Matrix with Rectangles

• LetM ∈ {0, 1}n×n matrix.

• Amonochromatic rectangle R inMmeans a submatrixN ofMwhose all
entries are 1.

• A collection of rectangles C coversM if their union covers all the nonzero
entries ofM.

• |C| is called a covering bound ofM. Cov(X) = min{|C| : C coversM}

10/23



Covering Bound of Matrix with Rectangles

• LetM ∈ {0, 1}n×n matrix.

• Amonochromatic rectangle R inMmeans a submatrixN ofMwhose all
entries are 1.

• A collection of rectangles C coversM if their union covers all the nonzero
entries ofM.

• |C| is called a covering bound ofM. Cov(X) = min{|C| : C coversM}

10/23



Covering Bound of Matrix with Rectangles

• LetM ∈ {0, 1}n×n matrix.

• Amonochromatic rectangle R inMmeans a submatrixN ofMwhose all
entries are 1.

• A collection of rectangles C coversM if their union covers all the nonzero
entries ofM.

• |C| is called a covering bound ofM. Cov(X) = min{|C| : C coversM}

10/23



Covering Bound of Simple Matrix

Consider A matrix X of dimension 2n × 2n where the rows and columns are
indexed by strings from {0, 1}n. Let X(a,b) = (1− aTb)2 where a,b ∈ {0, 1}n.

Theorem (Yannkakis, 1988, STOC)

Every monochromatic rectangle cover of suppmat(X) has size 2Ω(n) i.e.

Cov(suppmat(X)) ≥ 2Ω(n)
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Non-negative Factorization

• A rank r non-negative factorization of a matrixM is a factorizationM = TU
where T,U are non-negative matrix with r columns and r rows respectively.

• Non-negative rank ofM is the minimum rank of a non-negative factorization
ofM. Denote it by rank+(M).

Theorem (Factorization Theorem)

For a polytope P = {x | Ax ≤ b}where S is the slack matrix of P the following are
equivalent:
(i) S has non-negative rank at most r.
(ii) P has an extension of size at most r.
(iii) P has an EF of size at most r.

We get xc(P) = rank+(S).
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Factorization and Covering Bound Relation

For any matrixM ∈ Rm×n let suppmat(M) ∈ {0, 1}m×n is a matrix where the (i, j)th

element is 1 ifM(i, j) ̸= 0 and otherwise 0.

Theorem (Yannkakis, 1988, STOC)

Let M be any matrix with non-negative real entries. Then

rank+(M) ≥ Cov(suppmat(M))
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Correlation Polytope Lower Bound



Polytope equations

Consider the inner product of twomatrices A,B ∈ Rm×n be ⟨A,B⟩ = Tr(ATB)

For all a ∈ {0, 1}n there are some b ∈ {0, 1}n such that

⟨2diag(a)− aaT,bbT⟩ = 1

1− ⟨diag(a)− aaT,bbT⟩ = 1− 2⟨diag(a),bbT⟩+ ⟨aaT,bbT⟩
= 1− 2aTb+ (aTb)2 = (1− aTb)2

Remark

Because of above prove for all b ∈ COR(n), for all a ∈ {0, 1}n, ⟨2diag(a) −
aaT,bbT⟩ ≤ 1.

Hence let A,b be such that COR(n) = {x | Ax ≤ b}where (A,b) includes these
inequities. So the slack matrix S of COR(n) contains X.
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Lower Bound

Let S is the slack matrix of COR(n). Then S contains the matrix X.

• By Factorization Theorem xc(COR(n)) = rank+(S).

• Since X is submatrix of Swe have rank+(S) ≥ rank+(X).

• By Covering-Factorization Relation rank+(X) ≥ Cov(suppmat(X)) ≥ 2Ω(n).

Theorem
xc(COR(n)) = 2Ω(n).
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Lower Bound
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Independent Set Polytope Lower Bound



New Graph Construction

Let fix an n. Now consider the complete graph Kn. Now we will construct a graph
Hn = (Vn,En)with O(n2) vertices.

• Each vertex i ∈ Kn there is a 2-clique on i, î in Hn.
• Each edge (i, j) ∈ Kn

• There is a 4-clique on the vertices {ij, îj, îj, î̂j}.
• The additional edges

(i, îj) (̂i, ij) (j, îj) (̂j, ij)

(i, î̂j) (̂i, îj) (j, î̂j) (̂j, îj)

Let F is the face of IND(Hn) containing independent sets which have exactly one
vertex from each vertex-clique and one vertex from each edge-clique
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• The additional edges
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Let F is the face of IND(Hn) containing independent sets which have exactly one
vertex from each vertex-clique and one vertex from each edge-clique

18/23



New Graph Construction

Let fix an n. Now consider the complete graph Kn. Now we will construct a graph
Hn = (Vn,En)with O(n2) vertices.

• Each vertex i ∈ Kn there is a 2-clique on i, î in Hn.
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COR(n) Inside Independent Set Polytope

Take the linear map π : RVn → Rn×n. Let π(x) = y. Then

yij = yji = xij

• S is independent set ofHn. χS is the characteristic vector.
• Define b ∈ {0, 1}n where bi = 1 iff ii ∈ S otherwise 0

Observe: For edge (i, j) ∈ Kn, ij ∈ S ⇐⇒ ii, jj ∈ S.
Then π(χS) = bbT. So π(F) ⊆ COR(n)

• b ∈ {0, 1}n. Consider bbT.
• S contains a vertex ii if bi = 1 and S contains î if bi = 0.

χS ∈ F. So π(χS) = bbT. So
π(F) = COR(n)

So COR(n) is a face of IND(Hn).
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χS ∈ F. So π(χS) = bbT. So
π(F) = COR(n)

So COR(n) is a face of IND(Hn).

19/23



Lower Bound

AboveHn has 2n+
(n
2

)
vertices.

• For any n consider p to be the maximum such that 2p+
(p
2

)
≤ n.

• Take the graph Hp and add n− 2p−
(p
2

)
isolated vertices to construct Gn.

• IND(Hp) isomorphic to IND(Gn)

xc(IND(Gn)) = xc(IND(Hp)) ≥ xc(COR(p)) ≥ 2Ω(p) = 2
Ω
(
n
1
2

)

Theorem

For all n ∈ N there exists graph Gn, xc(IND(Gn)) = 2
Ω
(
n
1
2

)
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TSP Polytope Lower Bound



Theorem (Yannkakis, 1988, STOC)

Every p-vertex graph G, IND(G) is the linear projection of a face of TSP(n)with
n = O(p2).

Therefore

xc(TSP(n)) ≥ xc(IND(Gp)) = 2
Ω
(
p
1
2

)
= 2

Ω
(
n
1
4

)
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Thank You
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