
Universal Optimality of Dijkstra Algorithm

Using Fibonacci-Like Priority Queue with Working Sets

Soham Chatterjee

July 24, 2025

Oral Qualifier, STCS

Introduction

• Dijkstra algorithm is a foundation algorithm solving Single Source

Shortest Path problem (SSSP) both for directed and undirected

graphs.

• Using Fibonacci Heaps we have the worst-case time complexity

O(m + n log n).

• Recently Duan, Mao, Shu and Yin in 2023 solved SSSP for undirected

graphs with expected time O(m
√︁
log n log log n)

• This year in STOC Duan, Mao, Mao, Shu, Yin solved SSSP for directed

graphs in O(m log
2

3 n) time.

Assumptions

• Input graph is always connected.

• All trees are rooted at s.

• For any vertex v , T (v) denote the subtree of T rooted at v .

• The weights of the graph are positive real numbers.

• We allow the∞ in the weights.

Dijkstra Algorithm

Algorithm: Dijkstra(G, s,w)
F ←− ∅, Insert(F , s), dist (s) ←− 0

while F ≠ ∅ do
u←− ExtractMin(F)
for e = (u, v) ∈ E do

If v is unseen, Insert(F , v)
DecreaseKey(F , v,min{dist (v), dist (u) + w (u, v)})

Dijkstra solves three problems:

• Computes Shortest Distances

• Build Shortest Path Tree

• Sorts vertices by Shortest Distance (DO)

Comparison-Addition Model

Notice the Dijkstra algorithm does the following operations:

• Adds two values

• Compares two values.

• Stores Values.

So we will work on a model where all possible operations are addition,

compare and storage.

For a given graph:

• OPTQ (G) is the number of comparison queries of an optimal

algorithm for this graph.

• OPT (G) be the number of total steps taken by an optimal correct

algorithm for the graph.

Universal Optimality

• Let A is the set of all correct algorithms.

• Gn,m is the set of all graphs with n vertices and m edges.

• WG is the set of all possible weights for a graph G ∈ Gn,m.

A correct algorithm A∗ is existentially optimal if

∀ n,m : sup
G∈Gn,m
w∈WG

A∗ (G,w) ≤ 𝛼 inf
A∈A

sup
G∈Gn,m
w∈WG

A(G,w)

where 𝛼 = Õ(1). This corresponds to being optimal wrt worst-case

complexity.

But this is not good. It is just saying A∗ may take as much time as it takes

in a star-graph or more complicated one.

Universal Optimality

We want a notion of optimality which says your algorithm is optimal

compared to any other algorithm if you fix the graph.

A correct algorithm A∗ is universally optimal if

∀ n,m, ∀ G ∈ Gn,m : sup
w∈WG

A∗ (G,w) ≤ 𝛼 inf
A∈A

sup
w∈WG

A(G,w)

where 𝛼 = Õ(1).

In this discussion we will focus solely on 𝛼 = O(1).

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the

unexplored neighbors of that vertex as children of that vertex. The tree

built this way is called the exploration tree.

• Let T be the exploration tree. Let ≺ be the final distance ordering of

the vertices.

• Then for every edge (u, v) ∈ T , u ≺ v .

Order of Vertices by a Tree

Definition (Order of T)
Let T be any tree in G. An order of T is a total order of V (T) such that

for every edge (u, v) ∈ E (T) we have u ≺ v in the order.

The DO after Dijkstra is an order of exploration tree.

• L is an order of G if there exists a spanning tree T of G such that L is

an order of T .

• Order(G) is the number of all possible orders of G.

Lemma
For any graph G, L is an order of G iff there exists non-negative weights w
such that

1. For every two nodes u ≠ v, dw (s, u) ≠ dw (s, v).
2. u ≺L v if and only if dw (s, u) < dw (s, v).

Dijkstra Induced Interval Set

For any vertex v ∈ V (G)

• lv : When v was first discovered and added to the heap.

• rv : When v was removed from heap.

• [lv , rv]: Interval set of v

A run of Dijkstra induces intervals for each vertex v ∈ V with the

operations Insert and ExtractMin.

An interval set I is collection of intervals for each vertex. It is called

Dijkstra Induced when all the intervals for each vertex in I is induced by a

run of Dijkstra on some (G,w).

Working set of an Interval Set

Let I any interval set.

• For any vertex v ∈ V (G) at any time t ∈ I(v) the working setWv,t is

the set of vertices inserted after v and still present at time t . So

Wv,t = {[lu, ru] ∈ I : lv ≤ lu ≤ t ≤ ru}

• Working set of v , Wv = Wv,t∗ such that t∗ = argmax
t
|Wv,t |.

• The cost of a vertex v ∈ V (G) is Cost (v) = log |Wv |. And so

Cost (I) = ∑
v∈V (G)

log |Wv |.

Fibonacci-Like PriorityQueue with Working Set Property

FPQWSP is a type of Fibonacci Heap which satisfies the amortized time

complexity for any sequence of operations as follows:

FPQWSP Fibonacci Heap

Insert O(1) O(1)
DecreaseKey O(1) O(1)
ExtractMin O(1 + log |Wx |) O(log n)

Fact
There is a FPQWSP for Dijkstra. We will use this data structure in every

argument from now on by default.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times ExtractMin calls for each vertex and

m times DecreaseKey calls.

• Hence total time taken by all DecreaseKey calls is O(m).
• Total time taken by all ExtractMin calls is∑︁
v∈V (G)

O(1 + log |Wv |) = O ©­«n +
∑︁

v∈V (G)
log |Wv |

ª®¬ = O(n + Cost (I))

• Total time taken by Dijkstra is O(m + n + Cost (I))

Main Theorem

Theorem
Dijkstra implemented by FPQWSP in Comparison-Addition model has time
complexity O(OPTQ (G) +m + n).

Goal: We’ll show OPTQ (G) = Ω(Cost (I)).

• OPTQ (G) ≤ OPT (G)
• OPT (G) = Ω(n)
• OPT (G) = Ω(m)

So OPTQ (G) + n +m = O(OPT (G)).

Proof Flow

Fact
OPTQ (G) = Ω(log(Order(G)))

• Partition the exploration tree into non-comparable sets (B1, . . . ,Bk)
with i < j then no node of Bj is ancestor of any node of Bi .

• For any such partition log(Order(G)) = Ω

(
k∑
i=1
|Bi | log |Bi |

)

• There is a partition such that 2

k∑
i=1
|Bi | log |Bi | ≥ Cost (I)

Barrier Sequence

Definition (Barrier)
Let T be any tree. A Barrier, B ⊆ V (T) is a set of nodes where for any
two vertices u, v ∈ B, u is not ancestor of v in T .

• For two disjoint barriers, B1 ≺ B2 if no node of B2 is predecessor of a

node in B1.

• (B1, . . . ,Bk) is a barrier sequence if i < j =⇒ Bi ≺ Bj .

Lemma
A sequence (B1, . . . ,Bk) of pairwise disjoint vertex sets is barrier sequence if
and only if for all 1 ≤ i ≤ j ≤ k, v ∈ Bj is not ancestor of any u ∈ Bi in T .

Barriers Give Lower Bounds

Lemma
Let T be any spanning tree and (B1, . . . ,Bk) be a barrier sequence of T .

Then log(Order(G)) = Ω

(
k∑
i=1
|Bi | log |Bi |

)

• We have Order(G)) ≥ Order(T). We’ll show

Order(T) ≥ |B1 |!|B2 |! · · · |Bk |!.

• Delete vertices of Bk to get T ′. By induction for the barrier sequence

(B1, . . . ,Bk−1) for T ′, Order(T ′) ≥ |B1 |!|B2 |! · · · |Bk−1 |!.

Barriers Give Lower Bounds

• We can order vertices of Bk in any order we want. There are |Bk |!
many orders.

• For each order of Bk and any order of Order(T ′) we can just

concatenate them to get an order of T .

So finally we got the result:

Result
If T is a spanning tree of G and (B1, . . . ,Bk) is a barrier sequence for T
then

OPTQ (G) = Ω

(
k∑︁
i=1

|Bi | log |Bi |
)

Barriers in the Heap

Consider running Dijkstra algorithm until some time. Let S is the set of

nodes that are in the priority queue.

• Notice that S is the leaves of the partial exploration tree built so far

which is a subgraph of final exploration tree.

• Therefore, S is an incomparable set of the final exploration tree.

• S forms a barrier.

Result
At any time of the algorithm the set of elements in the priority queue

forms a barrier

Intersecting Coloring

A barrier sequence is basically coloring vertices in a certain way where

vertices in a barrier have same color.

Definition (Intersecting Coloring)
An intersecting coloring of I with k colors is a function C : I → [k] that
assigns a color to every interval and additionally for every color i ∈ [k],⋂
I∈I,C (I)=i

I ≠ ∅.

Every intersecting coloring induces a barrier sequence in the exploration

tree in following way: For any color c,

• Bc = {v ∈ V (G) | C(I(v)) = c}
• tc = min{t | ∀ v ∈ Bc, t ∈ I(v)}
• Order {Bc} by increasing order of {tc}. WLOG t1 < · · · < tk .

• (B1, . . . ,Bk) is a barrier sequence for exploration tree.

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of I with k colors. Let (B1, . . . ,Bk) is the
barrier sequence induced by C. Then let the energy of C is defined to be

E (C) = 2

k∑︁
i=1

|Bi | log |Bi |

Result
If I is the interval set induced by Dijkstra and C be any arbitrary

intersecting coloring of I then

OPTQ (G) = Ω(E (C))

Good Intersecting Coloring gives Optimality

Goal: Find an intersecting coloring of I, C such that E (C) ≥ Cost (I)

• Then time complexity of all ExtractMin operations is

O(n + Cost (I)) = O(n + E (C)).
• We have OPTQ (G) = Ω(E (C)).
• So overall Cost of ExtractMin in Dijkstra is upper bounded by

O(n + OPTQ (G)).
• Dijkstra achieves universal optimality for time complexity.

We will find such a good intersecting coloring recursively.

Finding Good Intersecting Coloring

• We will construct C by induction on |I |.
• Find the interval x ∈ I with the largest Wx . Use induction on

I′ = I \Wx

• Let C′ is the coloring for I′ such that E (C′) ≥ Cost (I′). Add a new

color for all the elements in Wx to get new coloring C.

• E (C) = E (C′) + 2|Wx | log |Wx | by definition.

Fact
For working set Wx with the largest size

Cost (I) ≤ Cost (I \Wx) + 2|Wx | log |Wx |

• Cost (I) ≤ Cost (I′) + 2|Wx | log |Wx |. Hence, E (C) ≥ Cost (I).

Thank You

OPTQ (G) = Ω(log(Order(G)))

Lemma
For any directed or undirected graph G, any algorithm for the DO problem
needs Ω(log(Order(G))) comparison queries in expectation.

• Let A is any correct algorithm and L ∈ Order(G).
• Given L we have a weight assignment wL such that L is unique order

obtained from wL upon running Dijkstra. For each L fix wL. LetW be

the collection of all such wL.

• Let CL ∈ {−1, 0, 1}∗ be the sequence of answers of comparisons made

by A on (G,wL). Then C :W → {−1, 0, 1}∗, C(wL) = CL is a ternary

prefix free code.

• By Shannon’s source coding lemma for symbol codes any such code

has expected length Ω(log(|W|)) = Ω(log(Order(G)))

Deleting Intervals from I

Lemma
Let I an interval set and x ∈ I. k = max

t
|{I ∈ I | t ∈ I}|. Then

Cost (I) ≤ Cost (I \ {x}) + log |Wx | + log k

• Let I1, . . . , Il ∈ I are the only intervals which had nonempty

intersection with x . So l ≤ k − 1.

• Let ti is starting point of Ii . WLOG assume tl > · · · > t1.

• Let Wi,W ′i are working sets of Ii before and after removing x .

Deleting Intervals from I

• Let t is starting point of x . ThenWi,t contains x, I1, . . . , Ii . So
|Wi | ≥ i + 1.

• |Wi | ∈ {|W ′i |, |W ′i | + 1} for all i ∈ [l].

Cost (I) − Cost (I \ {x}) − log |Wx |

=

l∑︁
i=1

log |Wi | − log |W ′i |

≤
l∑︁

i=1

log(i + 1) − log i = log(l + 1) ≤ log k

Fact
For any working set |Wx | = k we have

Cost (I) ≤ Cost (I \Wx) + 2|Wx | log |Wx |

