Universal Optimality of Dijkstra Algorithm

Using Fibonacci-Like Priority Queue with Working Sets

Soham Chatterjee
July 24, 2025

Oral Qualifier, STCS

Introduction

« Dijkstra algorithm is a foundation algorithm solving Single Source
Shortest Path problem (SSSP) both for directed and undirected
graphs.

« Using Fibonacci Heaps we have the worst-case time complexity
O(m+ nlog n).

Recently Duan, Mao, Shu and Yin in 2023 solved SSSP for undirected

graphs with expected time O(m+/log nloglog n)

« This year in STOC Duan, Mao, Mao, Shu, Yin solved SSSP for directed
graphs in O(mlog% n) time.

« Input graph is always connected.

« All trees are rooted at s.

« For any vertex v, T(v) denote the subtree of T rooted at v.
« The weights of the graph are positive real numbers.

« We allow the o in the weights.

Dijkstra Algorithm

Algorithm: DyksTrRA(G, s, w)

F «— 0, INSERT(F, s), dist(s) «— 0
while F # 0 do
u «— EXTRACTMIN(F)
fore= (u,v) € Edo
L If v is unseen, INSERT(F, v)
DEecrReASEKEY(F, v, min{dist(v), dist(u) + w(u, v)})

Dijkstra solves three problems:

« Computes Shortest Distances
« Build Shortest Path Tree
« Sorts vertices by Shortest Distance (DO)

Comparison-Addition Model

Notice the Dijkstra algorithm does the following operations:

« Adds two values
« Compares two values.

- Stores Values.

So we will work on a model where all possible operations are addition,

compare and storage.

For a given graph:

« OPTq(G) is the number of comparison queries of an optimal

algorithm for this graph.

« OPT(G) be the number of total steps taken by an optimal correct
algorithm for the graph.

Universal Optimality

» Let A is the set of all correct algorithms.
o Gnm is the set of all graphs with n vertices and m edges.

« We is the set of all possible weights for a graph G € G, .

A correct algorithm A* is existentially optimal if

Vnm: sup A"(G,w) <« |nf sup A(G, w)
GEQH,,, GEQ n,m
WEWG WEWG

where & = O(1). This corresponds to being optimal wrt worst-case

complexity.

But this is not good. It is just saying A* may take as much time as it takes
in a star-graph or more complicated one.

Universal Optimality

We want a notion of optimality which says your algorithm is optimal

compared to any other algorithm if you fix the graph.

A correct algorithm A* is universally optimal if

VnmVYGeGum: sup A"(G,w) <« |nf sup A(G,w)
weWg “ﬂWE(WG

where & = O(1).

In this discussion we will focus solely on a = O(1).

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the
unexplored neighbors of that vertex as children of that vertex. The tree

built this way is called the exploration tree.

« Let T be the exploration tree. Let < be the final distance ordering of
the vertices.

« Then for every edge (u,v) € T, u < v.

Order of Vertices by a Tree

Definition (Order of T)
Let T be any tree in G. An order of T is a total order of V(T) such that
for every edge (u,v) € E(T) we have u < v in the order.

The DO after Dijkstra is an order of exploration tree.
« Lis an order of G if there exists a spanning tree T of G such that L is
an order of T.

« Order(G) is the number of all possible orders of G.

Lemma
For any graph G, L is an order of G iff there exists non-negative weights w
such that

1. For every two nodes u # v, dy, (s, u) # dy(s, v).
2. u <y vifandonly ifd,(s, u) < dy(s,v).

Dijkstra Induced Interval Set

For any vertex v € V(G)

« l,: When v was first discovered and added to the heap.
« r,: When v was removed from heap.

o [l,, r,]: Interval set of v

A run of Dijkstra induces intervals for each vertex v € V with the
operations INSERT and EXTRACTMIN.

An interval set 1 is collection of intervals for each vertex. It is called
Dijkstra Induced when all the intervals for each vertex in 7 is induced by a

run of Dijkstra on some (G, w).

Working set of an Interval Set

Let J any interval set.

« For any vertex v € V(G) at any time t € I(v) the working set W, ; is
the set of vertices inserted after v and still present at time t. So

Wv,t:{[[u’ru] el: [, <[, <t< ru}

« Working set of v, W, = W, ¢ such that t* = arg max [Wy .

« The cost of a vertex v € V(G) is Cost(v) = log |W,|. And so

Cost(D) = 3 log|W,l.
veV(G)

Fibonacci-Like Priority Queue with Working Set Property

FPQWSP is a type of Fibonacci Heap which satisfies the amortized time
complexity for any sequence of operations as follows:

FPQWSP Fibonacci Heap
INSERT Oo(1) o(1)
DECREASEKEY Oo(1) o(1)
EXTRACTMIN | O(1+ log | W) O(log n)

Fact
There is a FPQWSP for Dijkstra. We will use this data structure in every
argument from now on by default.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times EXTRACTMIN calls for each vertex and
m times DECREASEKEY calls.

« Hence total time taken by all DEcrReaseKEY calls is O(m).

« Total time taken by all ExTRACTMIN calls is

Z 01 +log|W,|) = O n+ Z log |W,| | = O(n+ Cost(I))
veV(G) veV(G)

« Total time taken by Dijkstra is O(m+ n+ Cost(1))

Theorem
Dijkstra implemented by FPQWSP in Comparison-Addition model has time
complexity O(OPTq(G) + m+ n).

Goal: We'll show OPTq(G) = Q(Cost(1)).

. OPT4(G) < OPT(G)
.« OPT(G) = Q(n)
. OPT(G) = Q(m)

So OPTo(G) + n+ m= O(OPT(G)).

Proof Flow

OPTq(G) = Q(log(Order(G)))

- Partition the exploration tree into non-comparable sets (B, . .., By)
with i < j then no node of B; is ancestor of any node of B;.

k
« For any such partition log(Order(G)) = Q (Z | B;| log |B,~|)

=1

k
« There is a partition such that 2 3 |B;|log |B;| > Cost(I)

=1

Barrier Sequence

Definition (Barrier)
Let T be any tree. A Barrier, BC V(T) is a set of nodes where for any
two vertices u, v € B, u is not ancestor of vin T.

« For two disjoint barriers, By < B, if no node of B, is predecessor of a

node in Bj.
o (Bi,...,By) is a barrier sequenceif i < j = B, < B;.
Lemma
A sequence (B, . .., By) of pairwise disjoint vertex sets is barrier sequence if

and only if forall1 < i < j < k, v € B;j is not ancestor of any u € B; in T.

Barriers Give Lower Bounds

Lemma

Let T be any spanning tree and (B, . .., By) be a barrier sequence of T.
k

Then log(Order(G)) = Q (Z |B;| log |B,-|)
i=1

« We have Order(G)) > Order(T). We'll show
Order(T) = |By|!|By|! - - - | B!

« Delete vertices of By to get T’. By induction for the barrier sequence
(B], so00p Bk_1) for T’, Order(T’) > |B1|||Bz|| ce |Bk_]|!.

Barriers Give Lower Bounds

« We can order vertices of By in any order we want. There are |By|!
many orders.

« For each order of By and any order of Order(T’) we can just
concatenate them to get an order of T.

So finally we got the result:

If T is a spanning tree of G and (B;,

..., By) is a barrier sequence for T
then

k
> |Billog |B,»|)
=1

OPT4(G) = Q

Barriers in the Heap

Consider running Dijkstra algorithm until some time. Let S is the set of

nodes that are in the priority queue.

Notice that S is the leaves of the partial exploration tree built so far
which is a subgraph of final exploration tree.

Therefore, S is an incomparable set of the final exploration tree.

« Sforms a barrier.

Result
At any time of the algorithm the set of elements in the priority queue

forms a barrier

Intersecting Coloring

A barrier sequence is basically coloring vertices in a certain way where
vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of 7 with k colors is a function C : 7 — [k] that

assigns a color to every interval and additionally for every color i € [k],

N 1#0.
le1,C(I)=i

Every intersecting coloring induces a barrier sequence in the exploration
tree in following way: For any color c,

Bc={veV(G)| C((v)) =c}

e te=min{t|VYveB,tel(v)}

« Order {B.} by increasing order of {t.}. WLOG t; < -+ < t.

e (By,...,By) is a barrier sequence for exploration tree.

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of 7 with k colors. Let (B, ..., By) is the
barrier sequence induced by C. Then let the energy of C is defined to be

k
E(C)=2) |Blog]B|
i=1

If 7 is the interval set induced by Dijkstra and C be any arbitrary
intersecting coloring of 7 then

OPTq(G) = Q(E(C))

Good Intersecting Coloring gives Optimality

Goal: Find an intersecting coloring of I, C such that E(C) > Cost(T)
« Then time complexity of all EXTRACTMIN operations is
O(n+ Cost(I)) = O(n+ E(C)).
« We have OPTq(G) = Q(E(C)).

« So overall Cost of ExTRACTMIN in Dijkstra is upper bounded by
O(n+ OPTq(Q)).

« Dijkstra achieves universal optimality for time complexity.

We will find such a good intersecting coloring recursively.

Finding Good Intersecting Coloring

« We will construct C by induction on |I|.

« Find the interval x € 7 with the largest W,. Use induction on
I'=7\W,
« Let C’ is the coloring for 7’ such that E(C’) > Cost(I’). Add a new

color for all the elements in W, to get new coloring C.

o E(C) = E(C") + 2| W] log | W] by definition.

For working set Wy with the largest size

Cost(I) < Cost(Z \ Wy) + 2| Wy| log | Wy|

o Cost(I) < Cost(I') + 2| Wy|log |W|. Hence, E(C) > Cost(T).

Thank You

OPTq(G) = Q(log(Order(G)))

Lemma

For any directed or undirected graph G, any algorithm for the DO problem
needs Q(log(Order(G))) comparison queries in expectation.

« Let Ais any correct algorithm and L € Order(G).

« Given L we have a weight assignment w; such that L is unique order
obtained from w; upon running Dijkstra. For each L fix w;. Let ‘W be
the collection of all such w;.

« Let C; € {—1,0,1}* be the sequence of answers of comparisons made
by Aon (G, wy). Then C : W — {-1,0,1}*, C(w;) = C; is a ternary
prefix free code.

« By Shannon’s source coding lemma for symbol codes any such code
has expected length Q(log(|W|)) = Q(log(Order(G)))

Deleting Intervals from

Lemma
Let I an interval set and x € . k = mtax|{l €1 | tel}|. Then

Cost(I) < Cost(Z \ {x}) + log |W,| + log k
o Let I1,..., 1} € T are the only intervals which had nonempty
intersection with x. So [< k—1.
« Let tj is starting point of /. WLOG assume t; > --- > t;.

« Let W, W/ are working sets of /; before and after removing x.

Deleting Intervals from

« Let tis starting point of x. Then W;; contains x, I, ..., ;. So
Wil = i+1.
« |Wil € {IW/[,|W/| + 1} for all i € [1].

Cost(I) — Cost(I \ {x}) — log |W«|

[
= log |Wi| - log |W/|

i=1
[
< > log(i+1) - log i = log(I+1) < log k

i=1

For any working set | Wy| = k we have

Cost(I) < Cost(I \ Wy) + 2| W,| log |W,|

