### Nisan's Pseudorandom Generator for RL

$$\mathsf{BPL}\subseteq\mathsf{SC}=\mathsf{DTISP}(\mathsf{poly}(\mathit{n}),\mathsf{log}^2(\mathit{n}))$$

Soham Chatterjee

December 2, 2025

Pesudorandomness Course (CSS.413.1) Presentation, STCS

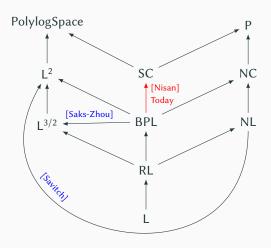
### **Complexity Classes**

- L: Deterministic Logarithmic Space.
- $L^{\alpha}$ ,  $\alpha > 0$ : Set of problems decidable in  $O(\log^{\alpha} n)$  space deterministically.
- NL: Nondeterministic Logarithmic Space.
- RL: Randomized Logarithmic Space with One-sided error  $\frac{1}{3}$ .
- BPL: Randomized Logarithmic Space with Two-sided error  $\frac{1}{3}$ .
- SC: Steve's Class or DTISP(poly(n), poly(log n)) i.e. set of problems decidable deterministically in polynomial time and polylog space.
- NC: Nick's Class i.e. set of problems decidable in circuits of polynomial size and polylog depth and bounded fan-in.

#### Remark

Don't confuse SC with  $P \cap PolylogSpace!$ 

# **Complexity Classes Zoo**



### **Pseudorandom Generator**

#### **Definition (Pseudorandom Generator)**

A map  $G: \{0, 1\}^l \to \{0, 1\}^n$ , where  $n \ge l$  is called a PRG for a class C with a parameter  $\epsilon > 0$  if for any  $f \in C$ ,

$$\left| \underset{y \in \{0,1\}^n}{\mathbb{P}} [f(y) = 1] - \underset{x \in \{0,1\}^l}{\mathbb{P}} [f(\mathcal{G}(x)) = 1] \right| \le \epsilon$$

- Here *l* is called the seed-length of the PRG.
- n l is called the stretch of the PRG.
- We call G,  $\epsilon$ -fools C.
- Typically, we want n >> l and G to be efficiently computable.

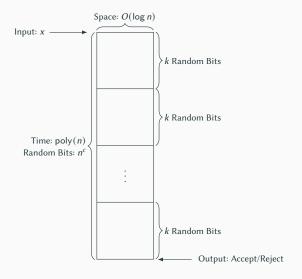
#### **Finite State Automata**

Let *T* be a BPL machine which uses  $n^c$  random bits on inputs of length *n* and runs in polynomial time and uses  $S = O(\log n)$  space.

- There are at most  $N := 2^{O(S)} = poly(n)$  configurations of T.
- Each random bit is used to make a transition between two configurations.
- The starting configuration is fixed for any input.
- Input x is accepted if T reaches a state representing acceptance.

Therefore the configuration graph of T on input x represents a finite state automata with N states.

## Computational Tableau of BPL machine



**Figure 1:** Computational Tableau of BPL machine *T*.

### **Dividing BPL Computation into Blocks**

- Let the BPL machine T run in time T(n) = poly(n) using  $n^c$  random bits and  $O(\log n)$  space on input x of length n.
- Let  $k \ll n^c$  be a parameter to be fixed later.
- Divide the computation of *T* into  $t = n^c/k$  blocks, where each block uses *k* random bits.
- We can treat each block as a separate BPL machine  $T_i$  (in some sense) which takes input as the final configuration of  $T_{i-1}$  and k random bits.

## FSA for Computation Blocks

- We can think of *T* as a finite state automata with *N* states.
- Each state makes 2<sup>k</sup> transitions where each transion corresponds to a choice of k random bits.
- Let Q be this automata. For transition we write Q(i; r) = j for any  $r \in \{0, 1\}^k$  if Q goes from state i to state j when fed r.
- Let M be the matrix where  $M[i,j] = \underset{r \in \{0,1\}^k}{\mathbb{P}} [Q(i;r) = j]$

$$\mathbb{P}_{r \in \{0,1\}^{k \times t}} [T(x,r) = \mathsf{Acc}] = \sum_{j: \mathsf{Accepting \, state}} M^t[1,j]$$

**Goal:** Approximate  $M^t$  using PRG.

# Approximate Automata Matrix

Suppose we have a pseudorandom generator  $\mathcal{G}: \{0,1\}^k \to \{0,1\}^{k \cdot t}$ . Let Q be a finite state automata with N states and its matrix be M as defined above.

- From definition of M,  $M^t[i,j] = \mathbb{P}_{r_1,\dots,r_t \in \{0,1\}^k}[Q(i;r_1\dots;r_t)=j]$
- Using  $\mathcal{G}$ , let  $M_{\mathcal{G}}[i,j] = \underset{r \in \{0,1\}^k}{\mathbb{P}}[Q(i;\mathcal{G}(r)) = j]$
- Want to construct G such that

$$\|M^t - M_{\mathcal{G}}\| < \epsilon$$

for small  $\epsilon$ .

Then if T decides a language with error probability at most  $\frac{1}{3}$ , using G we can calculate the  $\sum_{j:\text{Accepting state}} M_G[1,j]$  and decide the language if it is at least  $\frac{2}{3} - \epsilon$ .

### **Matrix Norm**

For any vector  $v \in \mathbb{R}^N$ , define  $||v|| = \sum_{i \in [N]} |v(i)|$ . Then for any matrix  $M \in \mathbb{R}^{N \times N}$  define  $||M|| = \sup_{0 \neq v \in \mathbb{R}^N} \frac{||Mv||}{||v||}$ 

#### **Properties:**

- $||M|| \le \max_{i \in [N]} \sum_{j \in [N]} |M[i, j]|$
- $||M + N|| \le ||M|| + ||N||$
- $||MN|| \le ||M|| \cdot ||N||$
- For our use-case M is row-stochastic, so ||M|| = 1

### **Universal Hash Family**

### Definition (Universal Hash Family (Carter-Wegman))

 $\mathcal{H} = \{h : \{0, 1\}^k \to \{0, 1\}^m\}$  is a universal hash family if for any  $x_1 \neq x_2 \in \{0, 1\}^k$  and  $y_1, y_2 \in \{0, 1\}^m$ ,

- $\mathbb{P}_{h \in \mathcal{H}}[h(x_1) = y_1] = \frac{1}{2^m}$
- $\mathbb{P}_{h \in \mathcal{H}}[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{2^{2m}}$

- For our purpose, we have k = m.
- We can construct such a family with  $|\mathcal{H}| = 2^{O(k)}$  where each  $h \in \mathcal{H}$  can be represented using O(k) bits and evaluated in poly(k) time over  $GF(2^k)$ .

# Property of Universal Hash Family

#### **Definition** (( $\epsilon$ , A, B)-good hash function)

Let  $A \subseteq \{0, 1\}^k$ ,  $B \subseteq \{0, 1\}^m$ ,  $\epsilon > 0$ ,  $h : \{0, 1\}^k \to \{0, 1\}^m$  is said to be  $(\epsilon, A, B)$ -good if

$$\left| \mathbb{P}_{x \in \{0,1\}^k} [x \in A \land h(x) \in B] - \alpha \cdot \beta \right| \le \epsilon$$

where  $\alpha = \frac{|A|}{2^k}$  and  $\beta = \frac{|B|}{2^m}$ .

#### Lemma (Proved in Appendix)

If  $\mathcal{H}$  is a universal hash family, then for any  $A \subseteq \{0, 1\}^k$ ,  $B \subseteq \{0, 1\}^m$ ,  $\epsilon > 0$ ,

$$\mathbb{P}_{h\in\mathcal{H}}[h \text{ is not } (\epsilon, A, B)\text{-good}] \leq \frac{\alpha \cdot \beta}{2^k \epsilon^2}$$

### Nisan's Generator

Let  $\mathcal{H}$  be an universal hash family from  $\{0, 1\}^k$  to  $\{0, 1\}^k$ . For any integer  $m \ge 0$  define the function  $\mathcal{G}_m \colon \{0, 1\}^k \times \mathcal{H}^m \to \{0, 1\}^{k \cdot 2^m}$  recursively as follows:

• 
$$\mathcal{G}_0(x) = x$$

• 
$$\mathcal{G}_m(x, h_1, \ldots, h_m) = (\mathcal{G}_{m-1}(x, h_1, \ldots, h_{m-1}), \mathcal{G}_{m-1}(h_m(x), h_1, \ldots, h_{m-1}))$$

For example:

$$G_1(x, h) = (x, h(x)), \quad G_2(x, h_1, h_2) = (x, h_1(x), h_2(x), h_1 \circ h_2(x))$$

$$\mathcal{G}_3(x, h_1, h_2, h_3) = (x, h_1(x), h_2(x), h_1 \circ h_2(x),$$
$$h_3(x), h_1 \circ h_3(x), h_2 \circ h_3(x), h_1 \circ h_2 \circ h_3(x))$$

- We want  $k \cdot 2^m = n^c \implies m = \log t$ .
- This gives a stretch of  $k \cdot (t-1)$  bits.

### **Proof Flow**

Let  $h_1, \ldots, h_s$  be some fixed hash functions from  $\mathcal{H}$ . Define the matrix

$$M_{h_1,...,h_s}[i,j] = \underset{x \in \{0,1\}^k}{\mathbb{P}} [Q(i;\mathcal{G}_s(x,h_1,...,h_s)) = j]$$

• Using  $h_1, \ldots, h_s$  we had  $2^s$  many transitions in Q. So we should compare  $M_{h_1, \ldots, h_s}$  with  $M^{2^s}$ .

**Goal:** For 'good' choice of  $h_1, \ldots, h_m, \|M^{2^m} - M_{h_1, \ldots, h_m}\| < \epsilon$ 

#### Approach:

**Step 1:** Suppose we have  $h_1, \ldots, h_{s-1}$ . We will find  $h_s \in \mathcal{H}$  such that for all  $i, j \in [N]$ ,

$$\left\|M_{h_1,\ldots,h_{s-1}}^2-M_{h_1,\ldots,h_s}\right\|\leq \delta$$

**Step 2:** Using above property will show for all  $s \in [m]$ ,

$$\|M_{h_1,...,h_s} - M^{2^s}\| \le (2^s - 1)\delta$$

### Find good $h_s$ from $h_1, \ldots, h_{s-1}$

Suppose we have  $h_1, \ldots, h_{s-1} \in \mathcal{H}$  such that,

$$\|M_{h_1,...,h_{l_{s-1}}} - M^{2^{s-1}}\| \le (2^{s-1} - 1)\delta$$

If we can find  $h_s$  such that  $||M_{h_1,\dots,h_{s-1}}^2 - M_{h_1,\dots,h_s}|| \le \delta$  then we are done.

**Algorithm (FIND):** Go over all  $h \in \mathcal{H}$  and all  $i, j \in [N]$ :

Step 1: Compute

- $p_1 = M_{h_1,...,h_{s-1},h}[i,j]$
- $p_2 = \sum_{l \in [N]} M_{h_1, \dots, h_{s-1}}[i, l] \cdot M_{h_1, \dots, h_{s-1}}[l, j]$

**Step 2:** Check if  $|p_1 - p_2| > \frac{\delta}{N}$  go to next h else return h.

#### Remark

To compute  $M_{h_1,\ldots,h_{s-1},h}[i,j]$  it goes over all  $r \in \{0,1\}^k$  and compute  $\mathcal{G}_s(r;h)1,\ldots,h_s)$  and counts how many r gives  $Q(i;\mathcal{G}_s(r,h_1,\ldots,h_s))=j$  by simulating T. and return  $count/2^k$ .

#### Claim

There exists an  $h_s \in \mathcal{H}$  such that for all  $i, j \in [N]$ ,

$$\left| M_{h_1,...,h_{s-1},h_s}[i,j] - M_{h_1,...,h_{s-1}}^2[i,j] \right| \le \frac{\delta}{N}$$

Let  $A_{i,j}$  be the set of  $r \in \{0, 1\}^k$  such that  $Q(i; \mathcal{G}_{s-1}(r, h_1, ..., h_{s-1})) = j$ . So  $M_{h_1,...,h_{s-1}}[i,j] = \rho(A_{i,j})$  where  $\rho(A) = |A|/2^k$ .

• For any  $i, j \in [N]$ ,

$$M_{h_1,...,h_{s-1}}^2[i,j] = \sum_{l \in [N]} \rho(A_{i,l}) \cdot \rho(A_{l,j})$$

• For any  $h \in \mathcal{H}$ ,

$$M_{h_1,...,h_{s-1},h}[i,j] = \sum_{l \in [N]} \mathbb{P}_{r \in \{0,1\}^k}[r \in A_{i,l} \land h(r) \in A_{l,j}]$$

For a random  $h \in \mathcal{H}$  with probability at least  $1 - \frac{N^4}{2^k \delta^2} \ge 1 - \frac{1}{2n^3}$ ,

$$\left| \mathbb{P}_{r \in \{0,1\}^k} [r \in A_{i,l} \wedge h(r) \in A_{l,j}] - \rho(A_{i,l}) \cdot \rho(A_{l,j}) \right| \leq \frac{\delta}{N^2}$$

So by Union Bound random  $h \in \mathcal{H}$ ,  $(\frac{\delta}{N^2}, A, B)$  -good for all A, B with probability at least  $\frac{1}{2}$ .

$$\begin{split} & \left| M_{h_1,\dots,h_{s-1}}^2 [i,j] - M_{h_1,\dots,h_{s-1},h} [i,j] \right| \\ & \leq \sum_{l \in [N]} \left| \underset{r \in \{0,1\}^k}{\mathbb{P}} [r \in A_{i,l} \wedge h(r) \in A_{l,j}] - \rho(A_{i,l}) \cdot \rho(A_{l,j}) \right| \\ & \leq N \cdot \frac{\delta}{N^2} = \frac{\delta}{N} \end{split}$$

# Algorithm returns $good h_s$

#### Claim

If  $h_s$  is returned by the above algorithm, then

$$||M_{h_1,...,h_s} - M^{2^s}|| \le (2^s - 1)\delta$$

We have 
$$\|M_{h_1,...,h_{s-1}}^2 - M_{h_1,...,h_s}\| \le \delta$$
.

$$\|M_{h_1,\dots,h_s}-M^{2^s}\|\leq \|M_{h_1,\dots,h_s}-M_{h_1,\dots,h_{s-1}}^2\|+\|M_{h_1,\dots,h_{s-1}}^2-M^{2^s}\|$$

$$\begin{split} \|M_{h_1,\dots,h_{s-1}}^2 - M^{2^s}\| &\leq \|M_{h_1,\dots,h_{s-1}}\| \cdot \|M_{h_1,\dots,h_{s-1}} - M^{2^{s-1}}\| \\ &+ \|M_{h_1,\dots,h_{s-1}} - M^{2^{s-1}}\| \cdot \|M^{2^{s-1}}\| \\ &\leq 1 \cdot (2^{s-1} - 1)\delta + (2^{s-1} - 1)\delta \cdot 1 = (2^s - 2)\delta \end{split}$$

# **Setting Parameters**

• Set 
$$k = \log(N) = O(\log n)$$
. So  $t \approx n^c$ .

• Set 
$$m = \log t = O(\log n)$$
.

• Want 
$$(2^m - 1)\delta = \epsilon \implies \delta = \frac{\epsilon}{2^m}$$

### **Final Algorithm**

- Compute  $h_1, \ldots, h_m$  one by one using the algorithm FIND.
- Compute  $A[i,j] = M_{h_1,...,h_m}[i,j]$  for all  $i,j \in [N]$ .
- Compute  $\sum_{j:\text{Accepting state}} A[1,j]$  and accept if this is at least  $\frac{2}{3} \epsilon$  else reject.

**Space:** The only place where more than  $O(\log n)$  space is needed is to store the value of  $h_1, \ldots, h_m$ . And each  $h_i$  can be stored in  $O(k) = O(\log n)$  space. So total space used is  $O(\log^2 n)$ .

**Time:** For all  $s \in [m]$ , computing  $M_{h_1,\dots,h_s}[i,j]$  takes  $O(2^k)$  times computation of  $\mathcal{G}_s(r,h_1,\dots,h_s)$  for all r and to check if  $Q(i;\mathcal{G}_s(r,h_1,\dots,h_s))=j$  which takes  $O(2^m\cdot mk)\cdot T(n)$  time. So FIND takes  $O(N^2\cdot 2^{2m}\cdot 2^{m+k}\cdot mk)\cdot T(n)$ . Hence total time  $O(N^2\cdot 2^{2m}\cdot 2^{m+k}\cdot mk)\cdot m\cdot T(n)=\operatorname{poly}(n)$ .



### Appendix i

#### Lemma

If  $\mathcal{H}$  is a universal hash family, then for any  $A \subseteq \{0,1\}^k$ ,  $B \subseteq \{0,1\}^m$ ,  $\epsilon > 0$ ,

$$\mathbb{P}_{h\in\mathcal{H}}[h \text{ is not } (\epsilon, A, B)\text{-good}] \leq \frac{\alpha\beta(1-\beta)}{2^k\epsilon^2}$$

Consider the matrix  $M \in \{0, 1\}^{2^k \times |\mathcal{H}|}$  where M[x, h] = 1 if  $h(x) \in B$  and 0 otherwise. For any  $x_1 \neq x_2 \in \{0, 1\}^k$ ,  $\mathbb{E}_{h \in \mathcal{H}}[M[x_1, h]] = \beta$  and

$$\mathbb{E}_{h \in \mathcal{H}}[M[x_1, h]M[x_2, h]] = \beta^2$$

### Appendix ii

$$\mathbb{E}_{h \in \mathcal{H}} \left[ \left( \beta - \mathbb{E}_{x \in A} [M[x, h]] \right)^{2} \right] = \mathbb{E}_{x_{1}, x_{2} \in A} \mathbb{E}_{h \in \mathcal{H}} \left[ (\beta - M[x_{1}, h]) (\beta - M[x_{2}, h]) \right]$$

$$= \mathbb{E}_{x_{1}, x_{2} \in A} \left[ \beta^{2} - \beta \mathbb{E}_{h \in \mathcal{H}} [M[x_{1}, h]] - \beta \mathbb{E}_{h \in \mathcal{H}} [M[x_{1}, h]] + \mathbb{E}_{h \in \mathcal{H}} [M[x_{1}, h] \cdot M[x_{2}, h]] \right]$$

$$= \mathbb{E}_{x_{1}, x_{2} \in A} \left[ \mathbb{E}_{h \in \mathcal{H}} [M[x_{1}, h] \cdot M[x_{2}, h]] - \beta^{2} \right]$$

- For  $x_1 \neq x_2 : \underset{h \in \mathcal{H}}{\mathbb{E}} [M[x_1, h] \cdot M[x_2, h]] = \beta^2$
- For  $x_1 = x_2 : \underset{h \in \mathcal{H}}{\mathbb{E}} [M[x_1, h] \cdot M[x_2, h]] = \underset{h \in \mathcal{H}}{\mathbb{E}} [M[x_1, h]] = \beta.$

# Appendix iii

So,

$$\underset{h \in \mathcal{H}}{\mathbb{E}} \left[ \left( \beta - \underset{x \in A}{\mathbb{E}} [M[x,h]] \right)^2 \right] = \frac{1}{|A|} (\beta - \beta^2) = \frac{\alpha \beta (1-\beta)}{2^k}$$

Now  $\mathbb{P}_{x \in \{0,1\}^k}[x \in A \land h(x) \in B] = \alpha \mathbb{P}_{x \in A}[h(x) \in B] = \alpha \cdot \mathbb{E}_{x \in A}[M[x,h]]$ . So h is not  $(\epsilon, A, B)$  -good iff

$$\left| \underset{x \in A}{\mathbb{E}} [M[x, h]] - \beta \right| \ge \frac{\epsilon}{\alpha}$$

By Markov,

$$\mathbb{P}_{h \in \mathcal{H}}\left[\left|\beta - \mathbb{E}_{x \in A}[M[x, h]]\right| \ge \frac{\epsilon}{\alpha}\right] \le \frac{\alpha\beta(1 - \beta)}{2^k \epsilon^2}$$