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Introduction

This paper is Iterated Mod Problem by Karloff and Ruzzo [KR89]
Sequential algorithm for computing gcd is based on Euclidean
Algorithm r0 = a, r1 = b. Then

r2 = r0 mod r1, r3 = r1 mod r2, · · ·

gcd is the last nonzero ri.
But parallel complexity of gcd is poorly understood. Fastest
parallel algorithm takes O

(
n

log n

)
time [CG90]

gcd for polynomials is in NC
The problem we will study related to the gcd problem. It is given
integers or polynomials x, mn, mn−1, . . . , m1 find if

((x mod mn) mod mn−1) · · · ) mod m1) = 0
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Iterated Integer Mod Problem
Introduction

Problem:
Given positive integers x, mn, mn−1, . . . , m1 find if

((x mod mn) mod mn−1) · · · ) mod m1) = 0

Theorem

Iterated Iinteger Mod ∈ P

For any 2 numbers a and b, a mod b is in P. Here we are doing n
iterated mods. So it still takes polynomial time. So I IM ∈ P.
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Circuit Value Problem

Theorem ([Lad75])

Circuit Value Problem is P-complete.

Enough to take CVP for circuits with only NAND gates,
NANDCVP

Gates∈ [G]

Input Variables:= yi, i ∈ [r], Input Bits:= Yi, i ∈ [r]
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NANDCVP ≤l I IM
Log-Space Reduction

Let n = 2G.
x is n + 1-bit integer whose ith bit is Yj if the ith edge is incident
from the input yj. Otherwise it is 1.
1 ≤ g ≤ G

m2g = 22g + 22g−1 + ∑
jth edge

out-edge from g

2j and m2g−1 = 22g−1

Remark: Here m2g and m2g−1 simulate the gate g
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NANDCVP ≤l I IM I
Correctness

Theorem

Let xG+1 = x. And for all 1 ≤ g ≤ G xg =
((· · · ((x mod m2G) mod m2G−1) · · · mod m2g) mod m2g−1) = 0.
Then:

1 For all 1 ≤ g ≤ G + 1, xg ≤ 22g−1

2 For all 1 ≤ g ≤ G + 1, 0 ≤ j ≤ 2g − 1 if the jth edge is an outgoing
edge from an input node or from a gate h such that h ≥ g then xg’s jth
bit is the value carried by jth edge otherwise 1
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NANDCVP ≤l I IM II
Correctness

Prove by downward induction:

Base Case (g = G + 1): We have x < 22(G+1)−1 = 22G+1 = 2n+1. True
as x is n-bit number. And second condition follows by constuction.
Let the theorem holds for all g > k.
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NANDCVP ≤l I IM III
Correctness

Part (a):
xk = (xk+1 mod m2k) mod m2k−1. m2k−1 = 22k−1. So xk has 2k − 1

bits so xk < 22k−1. So Part (a) is proved.
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NANDCVP ≤l I IM IV
Correctness

Part (b):

The only bits differ between xk+1 and xk are the bits
corresponding to edges incident on kth vertex (in and out). In
xk+1 the jth bits are 1 if jth edge going out from gate k.

The 2k and 2k − 1th edges are in edges of gate k. So in xk+1 the
(2k)th and (2k − 1)th bits are the value carried by the (2k) and
(2k − 1)th edges. Two cases to consider:
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NANDCVP ≤l I IM V
Correctness

Both (2k) and (2k + 1)th bits are 1:
m2k ≤ xk+1 < 2m2k. So

(xk+1 mod mm2k ) mod m2k−1 = xk+1 − m2k

So in x2k at output bits position of m2k the 1 in replaced by 0

At least one of the bits is 0:

xk+1 < m2k =⇒ xk+1 mod m2k = xk+1

So in x2k at output bits position of m2k has 1.

Soham Chatterjee The Iterated Mod Problem 11 / 35



Iterated Integer Mod (I IM) Problem
Super Increasing 0-1 Knapsack Problem

Polynomial Iterated Mod Problem (PIM)

Introduction
Circuit Value Problem
NANDCVP ≤l I IM

I IM is P-complete

x1 < 21 is the value carried by the 0th edge, value of the CVP
instance.

Theorem

NANDCVP ≤l Iterated Integer Mod

Theorem

Integer Iterated Mod Problem is P-complete
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Introduction

Definition (0-1 Knapsack Problem)

Given an integer w and a sequence of integers w1, w2, . . . , wn is there

a sequence of 0 − 1 valued variables x1, . . . xn such that w =
n
∑

i=1
xiwi.

0-1 Knapsack Problem is known to be NP-complete. [GJ90]
A knapsack instance is called super increasing (SIK) if each
weight wi is larger than the sum of the previous weights i.e. for

all 2 ≤ i ≤ n we have wi >
i−1
∑

j=1
wj
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Super Increasing Knaspsack Problem (SIK)
Introduction

Theorem

Super Increasing Knaspsack Problem ∈ P

Greedy strategy considering the wi in decreasing order gives a linear
time algorithm for solving super increasing knapsack problem.
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SIK is P-complete I

Theorem

If w1, . . . , wn are such that ∀ i ∈ [n − 1]
i

∑
k=1

wk < wi+1 then there is a 0-1

sequence of variables x1, . . . , xn such that
n
∑

i=1
xiwi = w iff

((· · · ((w mod wn) mod wn−1) · · · ) mod w2) mod w1 = 1
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SIK is P-complete II

Observe: The previous reduction the modulo numbers doesn’t
satisfy super increasing knapsack condition.

Need to find another reduction of NANDCVP to I IM where
modulo numbers are super increasing to work with above
theorem !!
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SIK is P-complete III

Let x is n + 1-length base 4 number whose ith digit is Yj if the ith
edge is incident from the input yj. Otherwise it is 1.

1 ≤ g ≤ G
m2g = 42g + 42g−1 + ∑

jth edge
out-edge from g

4j

m2g−0.5 = 42g − 42g−1 = 3 × 42g−1, m2g−1 = 42g−1
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Define for all 1 ≤ g ≤ G,
xg = (((· · · (((x mod m2G) mod m2G−0.5) mod m2G−1) · · · ) mod
m2g) mod m2g−0.5) mod m2g−1 = 0 and xG+1 = x.

xg ≤ 42g−1 for all 1 ≤ g ≤ G + 1
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Theorem

For all 1 ≤ g ≤ G + 1, 0 ≤ j ≤ 2g − 1 if the jth edge is an outgoing edge
from an input node or from a gate h such that h ≥ g then xg’s jth bit is the
value carried by jth edge otherwise 1
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SIK is P-complete VI

Prove by downward induction. Base case g = G + 1 is true.

xk+1 and xk differs at the positions corresponding to the edges
incident on kth vertex.

2k and 2k − 1th edges are in-edges of vertex k so they are the
values carried by 2k and 2k − 1th edges
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If both of them 1:

4m2k > xk+1 ≥ m2k =⇒ xk+1 mod m2k = xk+1 − m2k < 42k−1

(xk+1 − m2k mod m2k−0.5) mod m2k−1 = xk+1 − m2k

In xk the positions where m2k has 1 will have 0.
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If at least one of them 0:
xk+1 mod m2k = xk+1. In xk positions where m2k has 1 will have 1.

xk+1 = a × 42k + b × 42k−1 + c where a, b ∈ {0, 1}

a = 1, b = 0:

(xk+1 mod m2k−0.5) mod m2k−1 = 1 × 42k−1 + c mod m2k−1 = c

a = 0:

(xk+1 mod m2k−0.5) mod m2k−1 = b × 42k−1 + c mod m2k−1 = c
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After m1, x1 < 21 is the value carried by the 0th edge, the value of the
CVP.

Notice: The modulos satisfies the super increasing knapsack
problem.

Since

k

∑
g=1

m2g + m2g−0.5 + m2g−1 =
k

∑
g=1

m2g + 42g < 42k+1 = m2(k+1)−1
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1 Sum of weights till m2k is strictly < m2(k+1)−1

2 Sum of weights till m2(k+1)−1
= (sum of weights till m2k) + m2(k+1)−1
< 2 × 42(k+1)−1 < 3 × 42(k+1)−1 = m2(k+1)−0.5

3 Sum of weights till m2(k+1)−0.5
= (sum of weights till m2k) + m2(k+1)−1 + m2(k+1)−0.5
< 2 × 42(k+1)−1 + 3 × 42(k+1)+1

= 42(k+1) + 42(k+1)−1 < m2(k+1)
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Theorem

NANDCVP ≤l Super Increasing Knapsack

Theorem

Super Increasing Knapsack Problem is P-complete.
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Polynomial Iterated Mod Problem
Introduction

Definition (Polynomial Iterated Mod Problem)

Given univariate polynomials a(x), b1(x), . . . , bn(x) over a field F

compute the residue
((· · · ((a(x) mod b1(x)) mod b2(x)) · · · ) mod bn−1(x)) mod bn(x)

A polynomial mod can’t test for two bits

(10)2 mod (11)2 = (10)2 but (x2 + 0x) mod (x2 + x) = 0x2 − x

Theorem

Polynomial Iterated Mod Problem is in P
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Lower Triangular Matrix Inversion

Theorem ([Hel74],[Hel78])

For any field F, lower triangular matrix inversion is in Arithmetic − NC

Theorem ([BvzGH82],[BCP84])

Lower triangular matrix inversion is in NC over finite fields and Q
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Reduction I

Given a(x), b1(x), . . . , bn(x) over F.
b0(x) = r0(x) = a(x) and di = deg bi(x) for all 0 ≤ i ≤ n.
Assume d0 ≥ d1 > · · · > dn

a(x) = q1(x)b1(x) + r1(x)
= q1(x)b1(x) + q2(x)b2(x) + r2(x)

...
= q1(x)b1(x) + · · ·+ qn(x)bn(x) + rn(x)

ri−1(x) = qi(x) · bi(x) + ri(x) with deg ri < deg bi = di or ri = 0
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Reduction II

The coefficient of xj in a(x), bi(x), qi(x), ri(x) are aj, bi,j, qi,j, ri,j.

deg q1 = d0 − d1, deg qi ≤ di−1 − di − 1

Compare the coefficients of xj in both direction.

(d0 + 1)× (d0 + 1) matrix M. Denote the variable matrix for
coefficients of qi and rn as X
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Reduction III

d0 − i-th entry of MX is coefficient of degree i. dk ≤ i < dk−1.

rn(x) +
n
∑

i=K+1
qi(x)bi(x) doesn’t take part in coefficient of xi.

i = dk + (dk−1 − dk − 1 − (dk−1 − 1 − i)) = dk + (i − dk)

Can’t go lower (dk−1 − dk − 1 − (dk−1 − 1 − i)) for coefficient of qk

d0 − i = (d0 − d1 + 1) + (d1 − d2) + · · · (dk−2 − dk−1) + (dk−1 − 1 − i)

So M has at (d0 − i, d0 − i)th entry bk,dk
and after that all entries are 0

in that row. Hence M is lower triangular.

Matrix is non-singular since the diagonal entries are the leading
coefficients of bi(x)
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Reduction IV

We need to inverse M which is in Arithmetic − NC for general fields
and for finite fields, Q it is in NC.

Theorem

Iterated Polynomial Mod Problem is in NC for finite field and Q and in
Arithmetic − NC for general field.
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Thank You!
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